高校深度学习视觉应用平台产品介绍

深度学习视觉应用平台是面向高校人工智能相关专业课程教学的工具。平台通过内置有趣的视觉应用案例,将深度学习算法与视觉应用相融合,实现图像分类、图像生成、图像增强的交互式实验场景,算法原理结构形象展现。同时通过内置的案例源码实现对代码的熟悉,由浅入深,环环相扣。不仅能够帮助学生快速进行快速实训,了解不同深度学习模型的搭建和训练的流程;还能够帮助老师减少算法课程备课成本,能够使用平台现有的案例源码实现相关算法的授课;还能够帮助我校其他专业更好理解人工智能应用。


深度学习视觉应用平台主要功能:

(1)支持上传和使用tensorflow2.0+和keras两种深度学习框架生成的模型。

(2)支持模型共享,公共库的模型可复制为个人模型,并进行隔离,保证个人数据独立安全。

(3)支持教师和学生每个案例下切换使用不同版本模型,方便教学中展示不同模型的结构内容。

(4)支持展示模型结构,辅助师生进行案例编程。

(5)支持展示模型源码,包括每一层模型结构对应的代码,为师生提供标准参考源码。

(6)开放实训平台跳转按钮,支持模型自主定制。当有特殊需求时,平台内置模型不满足教学要求,能够训练个人模型,并且可以在后续上传视觉应用平台中使用。

深度学习视觉应用平台特色:

1、建立模型库

支持教师和学生上传和分享模型。支持上传和使用tensorflow2.0+和kares两种深度学习框架生成的模型。支持模型共享,公共库的模型可复制为个人模型,并进行隔离,保证个人数据独立安全。

2、建立案例库

案例库提供手写数字识别、图像生成、图像分类、图像增强四种经典视觉算法案例,包括案例源码,模型结构等。

支持教师和学生每个案例下切换使用不同版本模型,方便教学中展示不同模型的结构内容。支持展示模型结构,辅助师生进行案例编程。支持展示模型源码,包括每一层模型结构对应的代码,为师生提供标准参考源码。

深度学习视觉应用平台支持的课程与相关实训
具体课程《深度学习及应用》

(1)基于CNN模型实现手写数字识别

(2)基于变分自动编码器自动生成MNIST图片

(3)利用AC-GAN生成MNIST图片

(4)基于RestNet-50实现图像分类

(5)基于Inception-v3实现图像分类

(6)基于DenseNet-121实现图像分类

(7)基于SqueezeNet v1.1实现图像分类

深度学习视觉应用平台可适用于高校大数据实验室及人工智能实验室等多个场景

相关推荐
ManageEngineITSM7 分钟前
云原生环境下的ITSM新趋势:从传统运维到智能化服务管理
大数据·运维·人工智能·云原生·itsm·工单系统
aneasystone本尊33 分钟前
可视化探索 GraphRAG 的知识图谱
人工智能
嘀咕博客36 分钟前
Krea Video:Krea AI推出的AI视频生成工具
人工智能·音视频·ai工具
As331001036 分钟前
Manus AI 与多语言手写识别技术全解析
大数据·网络·人工智能
小璐乱撞42 分钟前
超越传统 RAG:GraphRAG 全流程解析与实战指南
人工智能·后端
慧星云42 分钟前
魔多 AI 上线提现功能 :将你的收益安稳入袋!
人工智能·云计算·aigc
gloomyfish44 分钟前
【零代码】OpenCV C# 快速开发框架演示
人工智能·opencv·c#
视觉语言导航1 小时前
上科大解锁城市建模新视角!AerialGo:从航拍视角到地面漫步的3D城市重建
人工智能·3d·具身智能
DevUI团队1 小时前
MateChat V1.7.0版本发布,前端智能化项目贡献者已经达到90+,智能化卡片特性持续演进,快来体验吧~
前端·vue.js·人工智能
网络研究院1 小时前
AI代理需要数据完整性
人工智能·ai·数据·代理·完整性