高校深度学习视觉应用平台产品介绍

深度学习视觉应用平台是面向高校人工智能相关专业课程教学的工具。平台通过内置有趣的视觉应用案例,将深度学习算法与视觉应用相融合,实现图像分类、图像生成、图像增强的交互式实验场景,算法原理结构形象展现。同时通过内置的案例源码实现对代码的熟悉,由浅入深,环环相扣。不仅能够帮助学生快速进行快速实训,了解不同深度学习模型的搭建和训练的流程;还能够帮助老师减少算法课程备课成本,能够使用平台现有的案例源码实现相关算法的授课;还能够帮助我校其他专业更好理解人工智能应用。


深度学习视觉应用平台主要功能:

(1)支持上传和使用tensorflow2.0+和keras两种深度学习框架生成的模型。

(2)支持模型共享,公共库的模型可复制为个人模型,并进行隔离,保证个人数据独立安全。

(3)支持教师和学生每个案例下切换使用不同版本模型,方便教学中展示不同模型的结构内容。

(4)支持展示模型结构,辅助师生进行案例编程。

(5)支持展示模型源码,包括每一层模型结构对应的代码,为师生提供标准参考源码。

(6)开放实训平台跳转按钮,支持模型自主定制。当有特殊需求时,平台内置模型不满足教学要求,能够训练个人模型,并且可以在后续上传视觉应用平台中使用。

深度学习视觉应用平台特色:

1、建立模型库

支持教师和学生上传和分享模型。支持上传和使用tensorflow2.0+和kares两种深度学习框架生成的模型。支持模型共享,公共库的模型可复制为个人模型,并进行隔离,保证个人数据独立安全。

2、建立案例库

案例库提供手写数字识别、图像生成、图像分类、图像增强四种经典视觉算法案例,包括案例源码,模型结构等。

支持教师和学生每个案例下切换使用不同版本模型,方便教学中展示不同模型的结构内容。支持展示模型结构,辅助师生进行案例编程。支持展示模型源码,包括每一层模型结构对应的代码,为师生提供标准参考源码。

深度学习视觉应用平台支持的课程与相关实训
具体课程《深度学习及应用》

(1)基于CNN模型实现手写数字识别

(2)基于变分自动编码器自动生成MNIST图片

(3)利用AC-GAN生成MNIST图片

(4)基于RestNet-50实现图像分类

(5)基于Inception-v3实现图像分类

(6)基于DenseNet-121实现图像分类

(7)基于SqueezeNet v1.1实现图像分类

深度学习视觉应用平台可适用于高校大数据实验室及人工智能实验室等多个场景

相关推荐
通街市密人有2 分钟前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
大千AI助手6 分钟前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
蚂蚁RichLab前端团队6 分钟前
🚀🚀🚀 RichLab - 花呗前端团队招贤纳士 - 【转岗/内推/社招】
前端·javascript·人工智能
智数研析社6 分钟前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
救救孩子把18 分钟前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
yzx99101323 分钟前
接口协议全解析:从HTTP到gRPC,如何选择适合你的通信方案?
网络·人工智能·网络协议·flask·pygame
只说证事1 小时前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@1 小时前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器
程思扬1 小时前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构
南方者1 小时前
它的 AI Agent 凭什么能擦出火花?!
人工智能·ai编程