lookup join 使用缓存参数和不使用缓存参数的执行前后对比

0.先看结论

bash 复制代码
#缓存开启参数,默认关闭
  'lookup.cache.max-rows' = '1000',  -- 设置最大缓存条目数为 1000
  'lookup.cache.ttl' = '10 min'     -- 设置缓存条目的最大存活时间为 10 分钟

启用缓存

  • 查询时性能较高,因为数据直接从缓存中读取。
  • 缓存未过期时,MySQL 的查询负载较低。
  • 适用于维表数据变化较少的场景。

不启用缓存

  • 每次查询都会访问 MySQL,性能取决于 MySQL 查询效率。
  • MySQL 负载较高,不适合高频查询场景。

1.kafka准备工作

bash 复制代码
#(1)启动zk
[root@node1 server]# /export/server/zookeeper/bin/zkServer.sh start

#确认 Zookeeper 是否在 2181 端口监听:
[root@node1 server]# netstat -tulnp | grep 2181
tcp6       0      0 :::2181                 :::*                    LISTEN      4651/java  

结果显示在监听中,没问题

#(2)启动kafka
[root@node1 bin]# cd /export/server/kafka/bin
[root@node1 bin]# kafka-server-start.sh -daemon /export/server/kafka/config/server.properties
[root@node1 bin]# netstat -tulnp | grep 9092
tcp6       0      0 192.168.77.161:9092     :::*                    LISTEN      23613/java    

结果显示在监听中,没问题

#(3)创建topic
[root@node1 bin]# kafka-topics.sh --create \
    --bootstrap-server node1:9092 \
    --replication-factor 1 \
    --partitions 1 \
    --topic orders_topic

#检查是否创建成功
[root@node1 bin]# ./kafka-topics.sh --bootstrap-server node1:9092 --list | grep orders_topic
orders_topic

有显示表示创建成功

#(4)生产数据
[root@node1 bin]# cd /export/server/kafka/bin
[root@node1 bin]# kafka-console-producer.sh --broker-list node1:9092 --topic orders_topic

{"order_id": 1, "customer_id": 101, "order_time": "2024-01-01 10:00:00"}
{"order_id": 2, "customer_id": 102, "order_time": "2024-01-01 10:05:00"}
{"order_id": 3, "customer_id": 103, "order_time": "2024-01-01 10:10:00"}


#(5)测试kafka消费数据
/export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server node1:9092 --topic orders_topic --from-beginning
/export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server node1:9092 --topic orders_topic --group group_test --from-beginning


-----备用-------
#删除kafka toopic
/export/server/kafka/bin/kafka-topics.sh --delete --topic orders_topic --bootstrap-server node1:9092
#重新创建相同的 Topic:
/export/server/kafka/bin/kafka-topics.sh --create --topic orders_topic --bootstrap-server node1:9092 --partitions 1 --replication-factor 1

------------

2.mysql准备工作

bash 复制代码
#创建表 和插入数据
CREATE DATABASE IF NOT EXISTS test;
USE test;

CREATE TABLE dim_customer (
    customer_id BIGINT PRIMARY KEY,
    customer_name VARCHAR(255)
);


INSERT INTO dim_customer (customer_id, customer_name) VALUES
(101, 'Alice'),
(102, 'Bob'),
(103, 'Charlie');

3.flinksql

bash 复制代码
#hadoop,我的checkpoint 数据是存hdfs的,所以要启动
start-dfs.sh

#启动flink
cd /export/server/flink
bin/start-cluster.sh

#启动flink sql客户端
sql-client.sh 
sql 复制代码
#创建一个从 Kafka 读取订单流数据的表
CREATE TABLE orders (
    order_id BIGINT,
    customer_id BIGINT,
    order_time TIMESTAMP(3),
    proc_time AS PROCTIME() -- 定义 Processing Time
) WITH (
    'connector' = 'kafka',
    'topic' = 'orders_topic',
    'properties.bootstrap.servers' = 'node1:9092',
    'properties.group.id' = 'flink_group',
    'format' = 'json',
    'scan.startup.mode' = 'earliest-offset'
);


select * from orders limit 5;

#创建一个从 MySQL 查询客户信息的维表:
CREATE TABLE dim_customer (
    customer_id BIGINT,
    customer_name STRING,
    PRIMARY KEY (customer_id) NOT ENFORCED
) WITH (
    'connector' = 'jdbc',
    'url' = 'jdbc:mysql://node1:3306/test',
    'table-name' = 'dim_customer',
    'username' = 'root',
    'password' = '123456',
    'lookup.cache.max-rows' = '1000',  -- 最大缓存行数
    'lookup.cache.ttl' = '10 min'     -- 缓存有效时间为 10 分钟
);
select * from dim_customer;

#实现订单流与客户信息的 Lookup Join:
SELECT
    o.order_id,
    o.customer_id,
    c.customer_name,
    o.order_time
FROM orders AS o
LEFT JOIN dim_customer FOR SYSTEM_TIME AS OF o.proc_time AS c
ON o.customer_id = c.customer_id;


---------不启动缓存查询---------
CREATE TABLE dim_customer_no_cache (
    customer_id BIGINT,
    customer_name STRING,
    PRIMARY KEY (customer_id) NOT ENFORCED
) WITH (
    'connector' = 'jdbc',
    'url' = 'jdbc:mysql://node1:3306/test',
    'table-name' = 'dim_customer',
    'username' = 'root',
    'password' = '123456'
);

SELECT
    o.order_id,
    o.customer_id,
    c.customer_name,
    o.order_time
FROM orders AS o
LEFT JOIN dim_customer_no_cache FOR SYSTEM_TIME AS OF o.order_time AS c
ON o.customer_id = c.customer_id;
sql 复制代码
更新维表数据(在查询过程中):

UPDATE dim_customer SET customer_name = 'Alice Updated' WHERE customer_id = 101;
UPDATE dim_customer SET customer_name = 'Bob Updated' WHERE customer_id = 102;
bash 复制代码
1. 启用缓存
表现:
(1)如果缓存未过期,查询结果不会反映 dim_customer 表的实时更新。
(2)更新 dim_customer 后,直到缓存失效(TTL 到期),才会刷新缓存并获取最新数据。
(3)预期结果如下
初始查询结果:无变化
+------------+-------------+---------------+---------------------+
| order_id   | customer_id | customer_name | order_time          |
+------------+-------------+---------------+---------------------+
| 1          | 101         | Alice         | 2024-01-01 10:00:00 |
| 2          | 102         | Bob           | 2024-01-01 10:05:00 |
| 3          | 103         | Charlie       | 2024-01-01 10:10:00 |
+------------+-------------+---------------+---------------------+

更新 dim_customer 后(缓存未过期):无变化
+------------+-------------+---------------+---------------------+
| order_id   | customer_id | customer_name | order_time          |
+------------+-------------+---------------+---------------------+
| 1          | 101         | Alice         | 2024-01-01 10:00:00 |
| 2          | 102         | Bob           | 2024-01-01 10:05:00 |
| 3          | 103         | Charlie       | 2024-01-01 10:10:00 |
+------------+-------------+---------------+---------------------+
缓存过期后(10 分钟 TTL 到期):更新了
+------------+-------------+------------------+---------------------+
| order_id   | customer_id | customer_name    | order_time          |
+------------+-------------+------------------+---------------------+
| 1          | 101         | Alice Updated    | 2024-01-01 10:00:00 |
| 2          | 102         | Bob Updated      | 2024-01-01 10:05:00 |
| 3          | 103         | Charlie          | 2024-01-01 10:10:00 |
+------------+-------------+------------------+---------------------+
------------------------------------------------------------------------------------
2. 不启用缓存
表现:
(1)每次查询都会直接访问 MySQL,查询结果能够实时反映 dim_customer 表的最新数据。
(2)实时性强,但性能可能较差。
(3)预期结果如下: 

初始查询结果:
+------------+-------------+---------------+---------------------+
| order_id   | customer_id | customer_name | order_time          |
+------------+-------------+---------------+---------------------+
| 1          | 101         | Alice         | 2024-01-01 10:00:00 |
| 2          | 102         | Bob           | 2024-01-01 10:05:00 |
| 3          | 103         | Charlie       | 2024-01-01 10:10:00 |
+------------+-------------+---------------+---------------------+

更新 dim_customer 后:
+------------+-------------+------------------+---------------------+
| order_id   | customer_id | customer_name    | order_time          |
+------------+-------------+------------------+---------------------+
| 1          | 101         | Alice Updated    | 2024-01-01 10:00:00 |
| 2          | 102         | Bob Updated      | 2024-01-01 10:05:00 |
| 3          | 103         | Charlie          | 2024-01-01 10:10:00 |
+------------+-------------+------------------+---------------------+
相关推荐
兜兜风d'33 分钟前
redis字符串命令
数据库·redis·缓存
野犬寒鸦3 小时前
从零起步学习Redis || 第十二章:Redis Cluster集群如何解决Redis单机模式的性能瓶颈及高可用分布式部署方案详解
java·数据库·redis·后端·缓存
悟能不能悟12 小时前
redis的红锁
数据库·redis·缓存
酷ku的森19 小时前
Redis的缓存更新策略
缓存
野犬寒鸦21 小时前
从零起步学习Redis || 第十一章:主从切换时的哨兵机制如何实现及项目实战
java·服务器·数据库·redis·后端·缓存
callJJ1 天前
缓存雪崩、击穿、穿透是什么与解决方案
缓存
如竟没有火炬1 天前
LRU缓存——双向链表+哈希表
数据结构·python·算法·leetcode·链表·缓存
阿湯哥1 天前
Redis数据库隔离业务缓存对查询性能的影响分析
数据库·redis·缓存
麦兜*1 天前
Redis 7.2 新特性实战:Client-Side Caching(客户端缓存)如何大幅降低延迟?
数据库·spring boot·redis·spring·spring cloud·缓存·tomcat
he___H1 天前
尚庭公寓中Redis的使用
数据库·redis·缓存·尚庭公寓