深度学习中的特征到底是什么?

深度学习中的特征到底是什么?

深度学习中的特征到底是什么?

特征要有对比才能更好地认识和区别。

常见的图像特征,如sobel边缘算子,提取出来的是图像的边缘特征信息,表示的是图像中像素有突

变的地方,然后用一个3*3的滤波器模板去提取出来。又比如LBP算子,对人脸区域比较敏感,能用

来检测人脸。这些特征都是通过某种方式(可以是滤波器算子等等)来提取某种类型的信息,换个说

法就是,输入图像通过一个数学变换+方式,将信息域从图像转换到另另一个信息域(边缘等),就

类似于,时序信号通过傅里叶变换+转成频域信号。

✨总的来说,特征提取+就是转换信息域,用另一种形式去表示图像的其某种特性

以红外与可见光图像融合为例,通常我们认为,浅层图像特征更更接近源图像,高频信号比较多,代

表边缘纹理比较多。随着下采样+等过程,深层特征更抽象,低频信号号比较多,代表语义因为比较

多。

CNN类型与GAN类型的区别,大家都有一个用于生成融合图像的网络但是损失的比较内容和形式

不一样。CNN的强度损失是直接用源图像与融合图像进行比较。CNN的边缘损失是用sobel算子+分

别计算源图像与融合图像的边缘,再用边缘图像进行比较。GAN是将源图像和融合图像分别通过鉴

别器网络,得到各自的概率分布+来进行比较。

以上,有图像、边缘、概率分布等信息域,因为损失是没办法完全为0的,只能尽可能的趋近于,因

此,需要从你认为重要的几个信息域去趋于一致。

现在已经有所有的损失都是在不同信息域进行比较的思想,接下来是拓展思维,如何设计深度学习

网络和损失函数*。

深度学习网络是一个万能函数拟合器+,它可以将输入拟合成任何你想要的样子,只要你用损失去

约束生成的东西和损失比较的东西趋于一致。这时候,网络模型型是有瓶颈的,越好的网络模型拟合

能力越强。

✨损失函数决定上限,网络模型决定离上限有多远。

如何想让网络模型生成的图像具有更多的边缘纹理信息,除了损失函数数用sobel作边缘损失以外,最

好还可以在网络里加入sobel算子作为预定义参数的卷积模块,女QSeAFusion。相同的思路,可以把

这种sobel分支当成随插随用的模块,嵌入到自己想要拿来用的模块。

如何设计损失函数,直接作L1L2损失,加个鉴别器(网络)是概率分布相关的损失,加个深度检测

网络是检测目标显著性的损失,加个语义分割+网络是检测语义信息的损失。GAN只是在CNN的基

础上加一些对抗机制。所以才有说,CNN类型是通过精心设计的网络模型和损失函数来生成高质量

的融合图像。VGG19的感知损失+是将图像在VGG19的不同层次的特征上趋于一致。

那么,你想让网络生成的结果更像什么呢?

相关推荐
老金带你玩AI6 分钟前
老金开源Agent Teams编排Skill:一句话自动组队,手动挡时代结束了
人工智能
TYFHVB127 分钟前
2026工业级CRM系统选型攻略:6款主流产品深度评测与场景适配剖析
大数据·人工智能
独自归家的兔10 分钟前
阿里 Qwen-Image-2.0 深度评测:中文 AI 绘画的新标杆
人工智能
AI智能观察11 分钟前
星海智能体重磅发布:TIMUS.AI 打造 AI 时代企业对客智能体平台
人工智能·数字人·智慧展厅·智能体·数字展厅·智慧营销
相思半13 分钟前
告别聊天机器人!2026 智能体元年:Claude 4.6 vs GPT-5.3 vs OpenClaw 全方位对比
人工智能·gpt·深度学习·claude·codex·智能体·seedance
玉梅小洋22 分钟前
2026年2月大模型性能对比分析报告
人工智能·ai·大模型·ai编程·ai工具
芝士爱知识a24 分钟前
[2026深度测评] AI期权交易平台推荐榜单:AlphaGBM领跑,量化交易的新范式
开发语言·数据结构·人工智能·python·alphagbm·ai期权工具
芝士爱知识a27 分钟前
【FinTech前沿】AlphaGBM:重塑期权交易的智能分析引擎——从原理到实践
数据结构·数据库·人工智能·alphagbm·期权
AC赳赳老秦28 分钟前
2026主权AI趋势:DeepSeek搭建企业自有可控AI环境,保障数据安全实战
大数据·数据库·人工智能·python·科技·rabbitmq·deepseek
人工智能培训28 分钟前
大模型架构演进:从Transformer到MoE
人工智能·深度学习·大模型·transformer·知识图谱·具身智能·人工智能 培训