基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio

0. 研究背景

在外呼系统中,我们的后台管理系统通常要对电话录音的内容进行提取和分析。那么说到分析,我们就要对录音中的两个人的对话进行分离,然后分别分析,比如分析客户是否有合作的意愿,分析客服讲的话术是否合理,分析客户情绪等等。那么这里就需要首先做说话人的分离。目前市面上有众多的说话人分离开源项目,其它国内比较知名的是阿里巴巴旗下的3D-Speaker

为了测试3D-Speaker看看能否对电话录音中的说话人分离情况,自己租了一台服务器,然后进行搭建,下面是我的搭建过程,本篇文章主要记录我搭建过程中遇到的一些问题,以及最后测试的情况。

1. 环境介绍

OS: Ubuntu Server 22.04

Python: 3.11

2. 开始搭建

创建环境

shell 复制代码
conda create -n spk python=3.11
conda activate spk

克隆源码

shell 复制代码
git clone https://github.com/modelscope/3D-Speaker.git
cd 3D-Speaker

安装依赖

shell 复制代码
pip install -r requirements.txt

注意:我实际在安装过程中修改了这个文件,把scikit-learn删除了,因为不删除,在安装过程中会报错,需要通过conda命令安装。

shell 复制代码
conda install scikit-learn

此外还需要安装下面依赖

shell 复制代码
cd egs/3dspeaker/speaker-diarization
pip install requirements.txt

注意:我实际在执行之前删掉了里面的一些依赖,有些依赖安装过程中报没有找到。打开这个文件,我删除了pyannote的依赖,然后手动安装了pyannote-audio。还有,在实际安装过程中会报numba问题,是因为这个文件中规定了版本,所以需要把文件中的版本号删掉。

shell 复制代码
pip install pyannote-audio

此外还有一些依赖需要手动安装

shell 复制代码
pip install onnx simplejson datasets==2.20.0 pydub onnxconverter_common

3. 测试

运行下面代码来测试

python 复制代码
from speakerlab.bin.infer_diarization import Diarization3Dspeaker
wav_path = "audio.wav"
pipeline = Diarization3Dspeaker()
print(pipeline(wav_path, wav_fs=None, speaker_num=None)) # can also accept WAV data as input

但是经过测试发现对这个audio.wav录音不没有正确区分说话人。

4. 优化

目前试过使用cam++以及使用pyannote-audio都未能正常区分出通话录音中的每个说话人。于是自己根据常规做法,先通过vad算法获取到每段声音的时间戳,然后对其每个音频片段计算声纹特征值向量,然后通过无监督聚类算法对其声纹特征相似的片段聚类。

最终实现了通话录音区分说话人的语音识别。

5. 其它

更多内容欢迎访问我的博客

说话人识别GUI程序可访问我的淘宝

相关演示视频,可在我的B《编程分享录》

个人github代码仓库,可访问这里

相关推荐
人工智能训练3 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
源于花海3 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
DisonTangor5 小时前
DeepSeek-OCR 2: 视觉因果流
人工智能·开源·aigc·ocr·deepseek
薛定谔的猫19825 小时前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了5 小时前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队5 小时前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒5 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6006 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房6 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20116 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习