基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio

0. 研究背景

在外呼系统中,我们的后台管理系统通常要对电话录音的内容进行提取和分析。那么说到分析,我们就要对录音中的两个人的对话进行分离,然后分别分析,比如分析客户是否有合作的意愿,分析客服讲的话术是否合理,分析客户情绪等等。那么这里就需要首先做说话人的分离。目前市面上有众多的说话人分离开源项目,其它国内比较知名的是阿里巴巴旗下的3D-Speaker

为了测试3D-Speaker看看能否对电话录音中的说话人分离情况,自己租了一台服务器,然后进行搭建,下面是我的搭建过程,本篇文章主要记录我搭建过程中遇到的一些问题,以及最后测试的情况。

1. 环境介绍

OS: Ubuntu Server 22.04

Python: 3.11

2. 开始搭建

创建环境

shell 复制代码
conda create -n spk python=3.11
conda activate spk

克隆源码

shell 复制代码
git clone https://github.com/modelscope/3D-Speaker.git
cd 3D-Speaker

安装依赖

shell 复制代码
pip install -r requirements.txt

注意:我实际在安装过程中修改了这个文件,把scikit-learn删除了,因为不删除,在安装过程中会报错,需要通过conda命令安装。

shell 复制代码
conda install scikit-learn

此外还需要安装下面依赖

shell 复制代码
cd egs/3dspeaker/speaker-diarization
pip install requirements.txt

注意:我实际在执行之前删掉了里面的一些依赖,有些依赖安装过程中报没有找到。打开这个文件,我删除了pyannote的依赖,然后手动安装了pyannote-audio。还有,在实际安装过程中会报numba问题,是因为这个文件中规定了版本,所以需要把文件中的版本号删掉。

shell 复制代码
pip install pyannote-audio

此外还有一些依赖需要手动安装

shell 复制代码
pip install onnx simplejson datasets==2.20.0 pydub onnxconverter_common

3. 测试

运行下面代码来测试

python 复制代码
from speakerlab.bin.infer_diarization import Diarization3Dspeaker
wav_path = "audio.wav"
pipeline = Diarization3Dspeaker()
print(pipeline(wav_path, wav_fs=None, speaker_num=None)) # can also accept WAV data as input

但是经过测试发现对这个audio.wav录音不没有正确区分说话人。

4. 优化

目前试过使用cam++以及使用pyannote-audio都未能正常区分出通话录音中的每个说话人。于是自己根据常规做法,先通过vad算法获取到每段声音的时间戳,然后对其每个音频片段计算声纹特征值向量,然后通过无监督聚类算法对其声纹特征相似的片段聚类。

最终实现了通话录音区分说话人的语音识别。

5. 其它

更多内容欢迎访问我的博客

说话人识别GUI程序可访问我的淘宝

相关演示视频,可在我的B《编程分享录》

个人github代码仓库,可访问这里

相关推荐
LaughingZhu22 分钟前
Product Hunt 每日热榜 | 2025-09-07
人工智能·经验分享·搜索引擎·产品运营
星马梦缘25 分钟前
Matlab机器人工具箱使用2 DH建模与加载模型
人工智能·matlab·机器人·仿真·dh参数法·改进dh参数法
居然JuRan42 分钟前
从零开始学大模型之预训练语言模型
人工智能
martinzh1 小时前
向量化与嵌入模型:RAG系统背后的隐形英雄
人工智能
新智元1 小时前
学哲学没出路?不好意思,现在哲学就业碾压 CS!
人工智能·openai
AI码上来1 小时前
当小智 AI 遇上数字人,我用 WebRTC 打造实时音视频应用
人工智能·webrtc·实时音视频
黎燃2 小时前
智能库存管理的需求预测模型:从业务痛点到落地代码的完整实践
人工智能
机器之心2 小时前
DPad: 扩散大语言模型的中庸之道,杜克大学陈怡然团队免训推理加速61倍
人工智能·openai
一车小面包2 小时前
人工智能中的线性代数总结--简单篇
人工智能·numpy
大模型真好玩2 小时前
深入浅出LangGraph AI Agent智能体开发教程(四)—LangGraph全生态开发工具使用与智能体部署
人工智能·python·mcp