Flink中并行度和slot的关系——任务和任务槽

一、任务槽(task slots)

Flink的每一个TaskManager是一个JVM进程,在其上可以运行多个线程(任务task),那么每个线程可以拥有多少进程资源呢?任务槽就是这样一个概念,对taskManager上每个任务运行所占用的资源做出明确的划分,即每个任务槽就表示了TaskManager拥有计算资源的一个固定大小的子集。

二、任务槽数量的设置

一个slot独享taskManager意味着更高的隔离级别,任务彼此之间影响降低;多个slot则能共享TCP连接、心跳信息、数据集等, 减少了每个任务的运行开销,在降低隔离级别时提高了性能。

可以通过taskmanager.numberOfTaskSlots参数来设置slot数量,最好设置为Cpu核数,因为slot仅仅用来隔离内存,避免不同任务对cpu的竞争。

三、共享slot

对于不同任务节点的子任务,Flink允许它们共享slot。即每个任务节点的子任务一字排开,占据不同的slot, 不同任务节点的子任务可以共享slot

那么为什么要共享slot呢?引文不同任务节点所需资源是不同的,有些是资源密集型,有些是资源非密集型。设想这样一种情况:在不共享时,有三个任务节点:source/map(这里由于并行度一致,所以合并算子链了)、widdow、sink,其中window是资源密集型的,那么当大量数据到来时,source/map和sink都可以很快完成,但window任务耗时很久,于是下游的sink任务所占据的slot就会因为等待而闲置,而上游的source/map任务也会因为数据积压而产生背压,从而资源开始等待,这样资源的利用效率就会大大降低。

解决这一问题的思路就是共享slot,在一个slot上同时存在资源密集型和非密集型任务,它们自由分配对资源的占用比例(即将资源密集型任务平均分配到每一个slot)从而提升资源利用率。

默认情况下,由于同一任务节点的并行子任务不能共享slot,所以**slot的数量就取决于所有算子并行度的最大值。**当然,也可以通过slotSharingGroup手动指定共享slot。

四、并行度和slot的关系

slot是静态的概念,指taskManager所拥有的并发执行能力;并行度是动态的概念,指实际运行中的并发能力。因此,并行度应当<=slot数,一旦超出也只能等待。因此,所有算子并行度中最大的那个就代表所需的slot数。

相关推荐
你觉得20510 分钟前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint
益莱储中国25 分钟前
世界通信大会、嵌入式展及慕尼黑上海光博会亮点回顾
大数据
Loving_enjoy1 小时前
基于Hadoop的明星社交媒体影响力数据挖掘平台:设计与实现
大数据·hadoop·数据挖掘
浮尘笔记1 小时前
go-zero使用elasticsearch踩坑记:时间存储和展示问题
大数据·elasticsearch·golang·go
碳基学AI2 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
一个天蝎座 白勺 程序猿3 小时前
大数据(4.6)Hive执行引擎选型终极指南:MapReduce/Tez/Spark性能实测×万亿级数据资源配置公式
大数据·hive·mapreduce
HelpHelp同学4 小时前
信息混乱难查找?三步搭建高效帮助中心解决难题
大数据·人工智能·知识库管理系统
TDengine (老段)10 小时前
TDengine 中的关联查询
大数据·javascript·网络·物联网·时序数据库·tdengine·iotdb
直裾15 小时前
Mapreduce的使用
大数据·数据库·mapreduce
麻芝汤圆17 小时前
使用 MapReduce 进行高效数据清洗:从理论到实践
大数据·linux·服务器·网络·数据库·windows·mapreduce