Flink中并行度和slot的关系——任务和任务槽

一、任务槽(task slots)

Flink的每一个TaskManager是一个JVM进程,在其上可以运行多个线程(任务task),那么每个线程可以拥有多少进程资源呢?任务槽就是这样一个概念,对taskManager上每个任务运行所占用的资源做出明确的划分,即每个任务槽就表示了TaskManager拥有计算资源的一个固定大小的子集。

二、任务槽数量的设置

一个slot独享taskManager意味着更高的隔离级别,任务彼此之间影响降低;多个slot则能共享TCP连接、心跳信息、数据集等, 减少了每个任务的运行开销,在降低隔离级别时提高了性能。

可以通过taskmanager.numberOfTaskSlots参数来设置slot数量,最好设置为Cpu核数,因为slot仅仅用来隔离内存,避免不同任务对cpu的竞争。

三、共享slot

对于不同任务节点的子任务,Flink允许它们共享slot。即每个任务节点的子任务一字排开,占据不同的slot, 不同任务节点的子任务可以共享slot

那么为什么要共享slot呢?引文不同任务节点所需资源是不同的,有些是资源密集型,有些是资源非密集型。设想这样一种情况:在不共享时,有三个任务节点:source/map(这里由于并行度一致,所以合并算子链了)、widdow、sink,其中window是资源密集型的,那么当大量数据到来时,source/map和sink都可以很快完成,但window任务耗时很久,于是下游的sink任务所占据的slot就会因为等待而闲置,而上游的source/map任务也会因为数据积压而产生背压,从而资源开始等待,这样资源的利用效率就会大大降低。

解决这一问题的思路就是共享slot,在一个slot上同时存在资源密集型和非密集型任务,它们自由分配对资源的占用比例(即将资源密集型任务平均分配到每一个slot)从而提升资源利用率。

默认情况下,由于同一任务节点的并行子任务不能共享slot,所以**slot的数量就取决于所有算子并行度的最大值。**当然,也可以通过slotSharingGroup手动指定共享slot。

四、并行度和slot的关系

slot是静态的概念,指taskManager所拥有的并发执行能力;并行度是动态的概念,指实际运行中的并发能力。因此,并行度应当<=slot数,一旦超出也只能等待。因此,所有算子并行度中最大的那个就代表所需的slot数。

相关推荐
2021_fc23 分钟前
Flink笔记
大数据·笔记·flink
Light601 小时前
数据要素与数据知识产权交易中心建设专项方案——以领码 SPARK 融合平台为技术底座,构建可评估、可验证、可交易、可监管的数据要素工程体系
大数据·分布式·spark
zyxzyx491 小时前
AI 实战:从零搭建轻量型文本分类系统
大数据·人工智能·分类
五阿哥永琪2 小时前
SQL中的函数--开窗函数
大数据·数据库·sql
程序员小羊!2 小时前
数仓数据基线,在不借助平台下要怎么做?
大数据·数据仓库
火山引擎开发者社区3 小时前
两大模型发布!豆包大模型日均使用量突破 50 万亿 Tokens
大数据·人工智能
Hello.Reader4 小时前
Flink SQL 的 UNLOAD MODULE 模块卸载、会话隔离与常见坑
大数据·sql·flink
禾高网络4 小时前
互联网医院系统,互联网医院系统核心功能及技术
java·大数据·人工智能·小程序
AI营销实验室4 小时前
原圈科技AI CRM系统:数据闭环与可视化革新的行业突破
大数据·人工智能
Deepoch5 小时前
仓储智能化新思路:以“渐进式升级”破解物流机器人改造难题
大数据·人工智能·机器人·物流·具身模型·deepoc·物流机器人