音视频采集推流时间戳记录方案

音视频同步更多文章

深入理解音视频pts,dts,time_base以及时间数学公式_视频pts计算-CSDN博客

ffplay音视频同步分析_ffplay 音视频同步-CSDN博客

音视频采集打时间戳设计

实时音视频数据的采集和处理场景。具体来说:

采集阶段:

  • 在音视频数据采集过程中,需要为每一帧数据计算出时间戳。
  • 可以采用"起始时间=系统时间"的方式,计算第一帧的时间戳,后续帧按照固定的帧间隔累加得到。
  • 同时引入动态校正机制,检测累计时间戳与系统时间的偏差,及时修正时间戳。

传输阶段:

  • 将计算好的时间戳与音视频数据一起传输到客户端。

播放阶段:

  • 客户端接收到数据后,先将其缓存一段时间。
  • 然后根据附带的时间戳信息,按照正确的时间顺序进行播放。
  • 客户端可以进一步利用时间戳信息来调整缓冲区,以适应网络环境的变化。

这种时间戳设计方案的核心思路就是:

  1. 在采集端尽量保证时间戳的准确性和稳定性。后续讲解如何设计稳定和准确的方案
  2. 将时间戳信息传输到客户端,利用它来进行缓冲和时间校正。
  3. 通过客户端和服务器端的协作,最终实现音视频数据的平滑播放。

这是实时音视频领域常用的一种时间戳管理策略,能够很好地应对系统负载变化、小数误差累积等问题。

方案推导

第一方案 直接系统时间模式

初始化 starttime = systime

frameTimeStamp = systime - start time

缺陷:涉及到音频硬件采样不稳定,操作系统调度和网络传输的时间,导致ts准确度不够问题且没用纠正机制。

第二种方案 帧间隔模式

初始化 starttime = systime

frameTimeStamp = current systime - start time
Compute TimeStamp = last FrameTimeStamp + duration

优点:能输出frame duration稳定的音视频时间戳。

缺陷:

  • 系统负载过高时,实际帧采集间隔可能与理论设定不一致。这将导致计算出的时间戳与实际情况不符,影响播放效果。
  • 帧间隔涉及到无限小数时,会随时间累积产生较大的误差。例如预计30帧,通常按帧间隔33毫秒处理,但实际是33.3333333毫秒。累积3333帧(约111秒)就出现1秒的误差。

第三种方案 帧间隔+直接系统时间模式

初始化 starttime = systime //起始时间=系统时间

frameTimeStamp = current systime - start time //第一帧时间戳= 系统时间--起始时间

Compute TimeStamp = last FrameTimeStamp + duration //后续帧TimeStamp=上一帧时间戳+ 帧间隔

T = current systime - starttime //当前系统时间 -- 起始时间

if( |Compute TimeStamp - T | >= duraiton/2 ) Compute TimeStamp = last FrameTimeStamp

//如果当前帧的计算时间戳(CurrentFrameTS)与系统时间差值(T)的绝对值大于等于一个半帧间隔,那么我们就应该将当前帧的时间戳直接设置为系统时间差值T。

解决:动态纠正,在第二方案基础上,解决了随着播放帧数,时间戳落后或提前现象。落点值 = T = current systime - starttime //当前系统时间 -- 起始时间。关键点是设置一个合理的校正阈值,这里我们使用了半帧间隔。

优点:能够实时纠正时间戳,只要系统正常运转,就能立即恢复正确的时间戳。

缺陷:帧间隔不均匀,能否正常播放依赖于终端解决方案。 比如,假如音频一帧间隔为24毫秒,被采集的回调时间可能为20 毫秒,28毫秒,27毫秒,21毫秒。

终端解决这个问题,可以从以下几个方面着手:

在客户端使用自适应缓冲机制:

  • 根据实际采集帧率的波动情况,动态调整缓冲区大小,尽量平滑播放。

在服务器端进行帧率转换:

  • 服务器可以对不同帧率的数据进行帧率转换,输出稳定的帧率。
  • 这样可以屏蔽掉客户端设备性能的影响。

使用更加先进的时间戳校正算法:

  • 例如利用机器学习等方法,预测并修正时间戳的偏差。

采集时间戳同步问题分析

在使用帧间隔+直接系统模式基础上,发送端时间戳记录:

  • 记录每一帧音视频数据的pts时间戳和pts_duration帧间隔
  • 同时记录相邻帧之间的系统时间间隔 sys_duration
  • 这样可以分析在采集阶段,帧间隔的稳定性

分析发送端时间戳:

  • (1) ptsd(pts_duration)波动大,说明采集帧间隔不稳定,可能是由于系统负载波动等因素引起的
    • 帧间隔 pts_duration 波动很大,那么意味着每帧数据被实际采集的时间间隔是不稳定的。这通常是由于系统负载波动、硬件性能波动等因素引起的,导致采集过程不够稳定。
  • (2) pts稳定,但sysd(sys_duration)波动大,说明在数据发送过程中,速率不够稳定可能是网络传输过程中出现了抖动.
    • 这里的 pts 时间戳是相对稳定的,意味着数据在采集端生成时间戳是比较准确的。但是,相邻帧之间的系统时间间隔 sys_duration 却出现了波动,说明在数据发送过程中,速率不够稳定。这种情况通常是由于网络传输过程中出现了抖动,导致实际发送速率不够平滑。
  • (3) sysd和ptsd的值应该较为一致,如果两者差异较大,说明在整个采集-传输过程中存在问题
  • 比如: [send]audio:1-pts:20ms-ptsd:24ms; sysd=23ms

接收端时间戳记录:

  • 接收到的帧信息包含: 帧序号、pts时间戳、pts_duration帧间隔
  • 同样记录了相邻帧的系统时间间隔 sys_duration

分析接收端时间戳:

  • (1) ptsd(pts_duration)波动大,说明采集帧间隔不稳定
  • (2) pts稳定,但sysd(sys_duration)波动大。说明在数据发送过程中,速率不够稳定
  • 比如: [recv] audio:1-pts:20ms-ptsd:24ms; sysd=23ms 200ms

总结核心思路是:

  • 在发送端和接收端同时记录时间戳信息,包括pts时间戳和系统时间
  • 通过对这些时间戳数据的分析,可以全面诊断出音视频同步过程中的各种问题
    • ptsd异常 采集端的帧间隔不稳定
    • pts稳定下 sysd异常 推流端的数据传输速率不稳定,存在网络传输过程中的抖动。

学习资料分享

0voice · GitHub

相关推荐
西***634710 小时前
声画合一 智控全场 —— 高清数字会议系统重构现代会议新生态
音视频·会议系统
REDcker11 小时前
RTSP 直播技术详解
linux·服务器·网络·音视频·实时音视频·直播·rtsp
微尘hjx11 小时前
【Gstreamer 应用程序开发手册 01】关于GSTREAMER
linux·音视频·媒体
石去皿11 小时前
轻量级 Web 应用 —— 把一堆图片按指定频率直接拼成视频,零特效、零依赖、零命令行
前端·音视频
runner365.git12 小时前
做一个基于ffmpeg的AI Agent智能体
人工智能·ffmpeg·大模型
进击的小头13 小时前
FIR滤波器实战:音频信号降噪
c语言·python·算法·音视频
Black蜡笔小新13 小时前
终结“监控盲区”:EasyGBS视频质量诊断技术多场景应用设计
人工智能·音视频·视频质量诊断
彷徨而立15 小时前
【FFmpeg】理解 av_packet_from_data 和 av_packet_unref 接口
ffmpeg
liliangcsdn16 小时前
视频嵌入表示生成方案的探索
数据库·人工智能·音视频
查无此人byebye16 小时前
深度解析:当前AI视频生成为何普遍“短小精悍”?
人工智能·pytorch·python·深度学习·音视频·transformer