3D坐标下,一点在某一线段上的左右方向的判定

3D坐标下,一点在某一线段上的左右方向的判定

代码

C++ 复制代码
#include <iostream>
#include <Eigen/Dense>

#define M_PI 3.1415926

// 计算三点组成平面的参数和变换到XOY平面的变换矩阵
void computePlaneAndTransform(const Eigen::Vector3d& P1, const Eigen::Vector3d& P2, const Eigen::Vector3d& P3,
                              Eigen::Vector4d& planeParams, Eigen::Matrix4d& transformMatrix) {
    // 确保P1在原点
    assert((P1 - Eigen::Vector3d::Zero()).norm() < 1e-6);

    // 计算平面的法向量
    Eigen::Vector3d normal = P2.cross(P3);
    normal.normalize();
    std::cout << "z = " << normal.z() << std::endl;
    if (normal.z() < 0) {
        normal = -1 * normal;
    }
    std::cout << "z2 = " << normal.z() << std::endl;
    // 平面方程为 Ax + By + Cz + D = 0,这里P1在原点,D = 0
    planeParams << normal.x(), normal.y(), normal.z(), 0;

    // 计算旋转矩阵,使得平面的法向量与Z轴对齐
    Eigen::Vector3d zAxis(0, 0, 1);
    double cosTheta = normal.dot(zAxis);
    Eigen::Vector3d crossProduct = normal.cross(zAxis);
    double sinTheta = crossProduct.norm();
    if (sinTheta < 1e-6) {
        // 特殊情况,法向量与Z轴平行或反平行
        if (cosTheta < 0) {
            // 法向量与Z轴反平行
            transformMatrix = Eigen::Matrix4d::Identity();
            transformMatrix.block<3, 3>(0, 0) = Eigen::AngleAxisd(M_PI, Eigen::Vector3d(1, 0, 0)).toRotationMatrix();
        } else {
            // 法向量与Z轴平行
            transformMatrix = Eigen::Matrix4d::Identity();
        }
    } else {
        crossProduct.normalize();
        Eigen::Matrix3d rotationMatrix;
        rotationMatrix << cosTheta + crossProduct.x() * crossProduct.x() * (1 - cosTheta),
                       crossProduct.x()* crossProduct.y()* (1 - cosTheta) - crossProduct.z() * sinTheta,
                       crossProduct.x()* crossProduct.z()* (1 - cosTheta) + crossProduct.y() * sinTheta,

                       crossProduct.y()* crossProduct.x()* (1 - cosTheta) + crossProduct.z() * sinTheta,
                       cosTheta + crossProduct.y() * crossProduct.y() * (1 - cosTheta),
                       crossProduct.y()* crossProduct.z()* (1 - cosTheta) - crossProduct.x() * sinTheta,

                       crossProduct.z()* crossProduct.x()* (1 - cosTheta) - crossProduct.y() * sinTheta,
                       crossProduct.z()* crossProduct.y()* (1 - cosTheta) + crossProduct.x() * sinTheta,
                       cosTheta + crossProduct.z() * crossProduct.z() * (1 - cosTheta);
        transformMatrix.setIdentity();
        transformMatrix.block<3, 3>(0, 0) = rotationMatrix;
    }
}

// 判断点在向量的哪一侧
int determineSide(const Eigen::Vector3d& p4, const Eigen::Vector3d& p5, const Eigen::Vector3d& p6) {
    // 投影到XOY平面
    Eigen::Vector2d p4_2d = p4.head<2>();
    Eigen::Vector2d p5_2d = p5.head<2>();
    Eigen::Vector2d p6_2d = p6.head<2>();

    // 计算向量 P4->P5 和 P4->P6
    Eigen::Vector2d v1 = p5_2d - p4_2d;
    Eigen::Vector2d v2 = p6_2d - p4_2d;

    double crossResult = v1.x() * v2.y() - v1.y() * v2.x();
    std::cout << "crossResult = " << crossResult << std::endl;
    if (crossResult < 0) {
        // 右侧
        return 1;
    } else if (crossResult > 0) {
        // 左侧
        return 2;
    } else {
        // 共线
        return 0;
    }
}

int main() {
    Eigen::Vector3d P1 = Eigen::Vector3d::Zero();
    Eigen::Vector3d P2(10, -10, -13);
    Eigen::Vector3d P3(0, 15, 0);

    Eigen::Vector4d planeParams;
    Eigen::Matrix4d mat;

    computePlaneAndTransform(P1, P2, P3, planeParams, mat);

    // 将点变换到XOY平面
    Eigen::Vector3d P4 = (mat * Eigen::Vector4d(P1.x(), P1.y(), P1.z(), 1)).head<3>();
    Eigen::Vector3d P5 = (mat * Eigen::Vector4d(P2.x(), P2.y(), P2.z(), 1)).head<3>();
    Eigen::Vector3d P6 = (mat * Eigen::Vector4d(P3.x(), P3.y(), P3.z(), 1)).head<3>();
    std::cout << "x, y, z = " << P4.x() << ", " << P4.y() << ", " << P4.z() << std::endl;
    std::cout << "x, y, z = " << P5.x() << ", " << P5.y() << ", " << P5.z() << std::endl;
    std::cout << "x, y, z = " << P6.x() << ", " << P6.y() << ", " << P6.z() << std::endl;

    int side = determineSide(P4, P5, P6);
    std::cout << "P3在向量P1->P2的";
    if (side == 1) {
        std::cout << "右侧" << std::endl;
    } else if (side == 2) {
        std::cout << "左侧" << std::endl;
    } else {
        std::cout << "共线" << std::endl;
    }
    system("pause");
    return 0;
}
相关推荐
huoyingcg8 小时前
3D Mapping秀制作:沉浸式光影盛宴 3D mapping show
科技·3d·动画·虚拟现实
luoganttcc1 天前
FastPillars:一种易于部署的基于支柱的 3D 探测器
3d
工业3D_大熊1 天前
3D Web轻量化引擎HOOPS Communicator在装配件管理上的具体优势
3d·3d web轻量化·3d渲染·3d模型可视化·工业3d·web端3d可视化·3d复杂模型轻量化
在下胡三汉1 天前
3dmax批量转glb/gltf/fbx/osgb/stl/3ds/dae/obj/skp格式导出转换插件,无需一个个打开max,材质贴图在
3d·材质·贴图
xhload3d1 天前
智能网联汽车云控平台 | 图扑数字孪生
3d·gis·智慧城市·html5·webgl·数字孪生·可视化·工业互联网·车联网·智慧交通·智能网联·汽车云控
木木黄木木1 天前
使用HTML5和CSS3实现炫酷的3D立方体动画
3d·css3·html5
lb29171 天前
CSS 3D变换,transform:translateZ()
前端·css·3d
淮北4942 天前
ros调试工具foxglove使用指南三:在3d空间写写画画(Panel->3D ->Scene entity)
python·学习·3d·机器人
大有数据可视化2 天前
为什么可视化大屏越来越多应用3D元素呢?
3d
千野竹之卫2 天前
2025最新云渲染网渲100渲染农场使用方法,渲染100邀请码1a12
开发语言·前端·javascript·数码相机·3d·3dsmax