Python中SKlearn的K-means使用详解

文章目录

Python中SKlearn的K-means使用详解

一、引言

K-means算法是一种广泛使用的无监督学习算法,主要用于数据聚类分析。其核心思想是将数据集分成K个簇,使得每个簇内的数据点相似度最大,而簇间的数据点相似度最小。在Python中,我们可以使用sklearn库中的KMeans函数来实现K-means聚类。本文将详细介绍如何在Python中使用sklearn库进行K-means聚类,并提供代码示例。

二、K-means算法原理

K-means算法的工作原理主要包括两个步骤:分配和更新。首先,随机选择K个数据点作为初始的簇中心。然后,算法进入迭代过程,包括以下两个主要步骤:

  1. 分配:将每个样本指定给最近的簇中心。
  2. 更新:通过计算分配给每个簇中心的所有样本的平均值来更新簇中心。

这个过程会不断重复,直到满足停止条件,比如达到最大迭代次数或者簇中心的变化小于某个阈值。

三、使用SKlearn进行K-means聚类的步骤

1、导入必要的库

在使用sklearn进行K-means聚类之前,需要导入相关的库。

python 复制代码
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

2、生成数据集

为了演示K-means聚类的效果,我们可以使用numpy生成一个简单的数据集。

python 复制代码
# 生成随机数据
X = np.random.rand(100, 2)

3、创建K-means模型并设置参数

接下来,创建一个KMeans模型,并设置聚类的个数n_clusters

python 复制代码
# 创建KMeans模型,设置聚类个数为3
kmeans = KMeans(n_clusters=3)

4、训练模型

使用fit方法训练模型,该方法会根据数据自动计算出簇中心。

python 复制代码
# 训练模型
kmeans.fit(X)

5、预测簇标签

使用predict方法为每个数据点预测其所属的簇。

python 复制代码
# 预测簇标签
labels = kmeans.predict(X)

6、可视化结果

为了更直观地展示聚类结果,我们可以使用matplotlib进行可视化。

python 复制代码
# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75) # 簇中心点
plt.title('K-means Clustering')
plt.show()

四、总结

K-means聚类算法是一种简单而强大的无监督学习算法,适用于多种数据聚类场景。通过sklearn库,我们可以轻松地在Python中实现K-means聚类,并对数据进行有效的分析和处理。本文提供了一个完整的K-means聚类实现流程,包括算法原理、代码示例和结果可视化,希望对您有所帮助。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

相关推荐
独好紫罗兰37 分钟前
洛谷题单3-P1217 [USACO1.5] 回文质数 Prime Palindromes-python-流程图重构
开发语言·python·算法
1alisa40 分钟前
Pycharm v2024.3.4 Windows Python开发工具
ide·python·pycharm
独好紫罗兰43 分钟前
洛谷题单2-P1424 小鱼的航程(改进版)-python-流程图重构
开发语言·python·算法
程序员小赵同学1 小时前
AI Agent设计模式二:Parallelization
开发语言·python·设计模式
杰克逊的日记1 小时前
CentOs系统部署DNS服务
linux·python·centos·dns
Bruce_Liuxiaowei2 小时前
基于Flask的DeepSeek~学术研究领域智能辅助系统设计与实现
后端·python·flask·deepseek
Swift社区2 小时前
轻松搞定!Mac 用户的 ESP-IDF 安装全攻略
python·嵌入式
学c真好玩2 小时前
4.3python操作ppt
开发语言·python·powerpoint
巷北夜未央3 小时前
数据结构之二叉树Python版
开发语言·数据结构·python
wapicn993 小时前
手机归属地查询Api接口,数据准确可靠
java·python·智能手机·php