Python中SKlearn的K-means使用详解

文章目录

Python中SKlearn的K-means使用详解

一、引言

K-means算法是一种广泛使用的无监督学习算法,主要用于数据聚类分析。其核心思想是将数据集分成K个簇,使得每个簇内的数据点相似度最大,而簇间的数据点相似度最小。在Python中,我们可以使用sklearn库中的KMeans函数来实现K-means聚类。本文将详细介绍如何在Python中使用sklearn库进行K-means聚类,并提供代码示例。

二、K-means算法原理

K-means算法的工作原理主要包括两个步骤:分配和更新。首先,随机选择K个数据点作为初始的簇中心。然后,算法进入迭代过程,包括以下两个主要步骤:

  1. 分配:将每个样本指定给最近的簇中心。
  2. 更新:通过计算分配给每个簇中心的所有样本的平均值来更新簇中心。

这个过程会不断重复,直到满足停止条件,比如达到最大迭代次数或者簇中心的变化小于某个阈值。

三、使用SKlearn进行K-means聚类的步骤

1、导入必要的库

在使用sklearn进行K-means聚类之前,需要导入相关的库。

python 复制代码
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

2、生成数据集

为了演示K-means聚类的效果,我们可以使用numpy生成一个简单的数据集。

python 复制代码
# 生成随机数据
X = np.random.rand(100, 2)

3、创建K-means模型并设置参数

接下来,创建一个KMeans模型,并设置聚类的个数n_clusters

python 复制代码
# 创建KMeans模型,设置聚类个数为3
kmeans = KMeans(n_clusters=3)

4、训练模型

使用fit方法训练模型,该方法会根据数据自动计算出簇中心。

python 复制代码
# 训练模型
kmeans.fit(X)

5、预测簇标签

使用predict方法为每个数据点预测其所属的簇。

python 复制代码
# 预测簇标签
labels = kmeans.predict(X)

6、可视化结果

为了更直观地展示聚类结果,我们可以使用matplotlib进行可视化。

python 复制代码
# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75) # 簇中心点
plt.title('K-means Clustering')
plt.show()

四、总结

K-means聚类算法是一种简单而强大的无监督学习算法,适用于多种数据聚类场景。通过sklearn库,我们可以轻松地在Python中实现K-means聚类,并对数据进行有效的分析和处理。本文提供了一个完整的K-means聚类实现流程,包括算法原理、代码示例和结果可视化,希望对您有所帮助。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

相关推荐
张登杰踩29 分钟前
VIA标注格式转Labelme标注格式
python
Learner1 小时前
Python数据类型(四):字典
python
odoo中国1 小时前
Odoo 19 模块结构概述
开发语言·python·module·odoo·核心组件·py文件按
Jelena157795857922 小时前
Java爬虫api接口测试
python
踩坑记录3 小时前
leetcode hot100 3.无重复字符的最长子串 medium 滑动窗口(双指针)
python·leetcode
诸神缄默不语4 小时前
Python处理Word文档完全指南:从基础到进阶
python
海棠AI实验室4 小时前
第四章 项目目录结构:src/、configs/、data/、tests/ 的黄金布局
python·项目目录结构
爱笑的眼睛115 小时前
超越可视化:降维算法组件的深度解析与工程实践
java·人工智能·python·ai
清铎6 小时前
leetcode_day12_滑动窗口_《绝境求生》
python·算法·leetcode·动态规划
ai_top_trends6 小时前
2026 年工作计划 PPT 横评:AI 自动生成的优劣分析
人工智能·python·powerpoint