Python中SKlearn的K-means使用详解

文章目录

Python中SKlearn的K-means使用详解

一、引言

K-means算法是一种广泛使用的无监督学习算法,主要用于数据聚类分析。其核心思想是将数据集分成K个簇,使得每个簇内的数据点相似度最大,而簇间的数据点相似度最小。在Python中,我们可以使用sklearn库中的KMeans函数来实现K-means聚类。本文将详细介绍如何在Python中使用sklearn库进行K-means聚类,并提供代码示例。

二、K-means算法原理

K-means算法的工作原理主要包括两个步骤:分配和更新。首先,随机选择K个数据点作为初始的簇中心。然后,算法进入迭代过程,包括以下两个主要步骤:

  1. 分配:将每个样本指定给最近的簇中心。
  2. 更新:通过计算分配给每个簇中心的所有样本的平均值来更新簇中心。

这个过程会不断重复,直到满足停止条件,比如达到最大迭代次数或者簇中心的变化小于某个阈值。

三、使用SKlearn进行K-means聚类的步骤

1、导入必要的库

在使用sklearn进行K-means聚类之前,需要导入相关的库。

python 复制代码
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

2、生成数据集

为了演示K-means聚类的效果,我们可以使用numpy生成一个简单的数据集。

python 复制代码
# 生成随机数据
X = np.random.rand(100, 2)

3、创建K-means模型并设置参数

接下来,创建一个KMeans模型,并设置聚类的个数n_clusters

python 复制代码
# 创建KMeans模型,设置聚类个数为3
kmeans = KMeans(n_clusters=3)

4、训练模型

使用fit方法训练模型,该方法会根据数据自动计算出簇中心。

python 复制代码
# 训练模型
kmeans.fit(X)

5、预测簇标签

使用predict方法为每个数据点预测其所属的簇。

python 复制代码
# 预测簇标签
labels = kmeans.predict(X)

6、可视化结果

为了更直观地展示聚类结果,我们可以使用matplotlib进行可视化。

python 复制代码
# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75) # 簇中心点
plt.title('K-means Clustering')
plt.show()

四、总结

K-means聚类算法是一种简单而强大的无监督学习算法,适用于多种数据聚类场景。通过sklearn库,我们可以轻松地在Python中实现K-means聚类,并对数据进行有效的分析和处理。本文提供了一个完整的K-means聚类实现流程,包括算法原理、代码示例和结果可视化,希望对您有所帮助。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

相关推荐
Python×CATIA工业智造12 分钟前
Frida RPC高级应用:动态模拟执行Android so文件实战指南
开发语言·python·pycharm
onceco42 分钟前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
狐凄1 小时前
Python实例题:基于 Python 的简单聊天机器人
开发语言·python
悦悦子a啊2 小时前
Python之--基本知识
开发语言·前端·python
笑稀了的野生俊4 小时前
在服务器中下载 HuggingFace 模型:终极指南
linux·服务器·python·bash·gpu算力
Naiva4 小时前
【小技巧】Python+PyCharm IDE 配置解释器出错,环境配置不完整或不兼容。(小智AI、MCP、聚合数据、实时新闻查询、NBA赛事查询)
ide·python·pycharm
路来了5 小时前
Python小工具之PDF合并
开发语言·windows·python
蓝婷儿5 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
AntBlack5 小时前
拖了五个月 ,不当韭菜体验版算是正式发布了
前端·后端·python
.30-06Springfield5 小时前
决策树(Decision tree)算法详解(ID3、C4.5、CART)
人工智能·python·算法·决策树·机器学习