pyQT + OpenCV小练习

一 ,创建一个 PyQt 应用程序,该应用程序能够:

使用 OpenCV 加载一张图像。

在 PyQt 的窗口中显示这张图像。

提供四个按钮(QPushButton):

  • 一个用于将图像转换为灰度图

  • 一个用于将图像恢复为原始彩色图

  • 一个用于将图像进行翻转

  • 一个用于将图像进行旋转

当用户点击按钮时,相应地更新窗口中显示的图像

1.思路分析

读取图片

添加按钮

将功能函数与按钮使用信号与槽连接

2.设计到的函数方法

复制代码
cv2.cvtColor(转换为灰度图)
复制代码
cv2.flip(翻转)
复制代码
cv2.getRotationMatrix2D(用于计算二维旋转矩阵的函数)
复制代码
cv2.warpAffine(对图像进行放射变换)

3.代码

python 复制代码
import cv2
import sys
from PyQt6.QtGui import QPixmap, QImage
from PyQt6.QtWidgets import QApplication, QWidget, QLabel, QPushButton


class MyWidget(QWidget):
   
    def __init__(self):
        super().__init__()

        self.resize(600, 400)

       
        self.lab3 = QLabel(self)
        self.lab3.resize(600, 400)
        self.lab3.setScaledContents(True)

        
        self.img = cv2.imread("./car5.png")
        self.update_image(self.img)

       
        btn1 = QPushButton("灰度", self)
        btn1.setStyleSheet("background-color:green")
        btn1.clicked.connect(self.change_image)  
        btn1.move(10, 10)  

        btn2 = QPushButton("彩色", self)
        btn2.setStyleSheet("background-color:green")
        btn2.clicked.connect(self.change_colours)  
        btn2.move(90, 10)

        btn3 = QPushButton("翻转", self)
        btn3.setStyleSheet("background-color:green")
        btn3.clicked.connect(self.change_transform)  
        btn3.move(170, 10)

        btn4 = QPushButton("旋转", self)
        btn4.setStyleSheet("background-color:green")
        btn4.clicked.connect(self.spin)  
        btn4.move(260, 10)


    def update_image(self, img):
        
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
        h, w, ch = img_rgb.shape
        bytes_per_line = ch * w
        qimage = QImage(img_rgb.data, w, h, bytes_per_line, QImage.Format.Format_RGB888)
        pixmap = QPixmap.fromImage(qimage)

        
        self.lab3.setPixmap(pixmap)

    def change_colours(self):
        self.update_image(self.img)

    def change_transform(self):
        img_filp = cv2.flip(self.img,0)
        self.update_image(img_filp)

    def spin(self):
        M = cv2.getRotationMatrix2D((self.img.shape[1]/2, self.img.shape[0]/2), 45, 0.5)

        img_warp = cv2.warpAffine(self.img,  
                                  M,  
                                  (700, 700),  大小
                                  flags=cv2.INTER_LINEAR,  
                                  
                                  )

        self.update_image(img_warp)


    def change_image(self):
       
        img_gray = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY)

  
        self.update_image(img_gray)




if __name__ == "__main__":
    app = QApplication(sys.argv)

    myWidget = MyWidget()

    myWidget.show()

    sys.exit(app.exec())

                             

4.效果展示


二,创建一个 PyQt 应用程序,该应用程序能够:
使用 OpenCV 加载一张图像。

在 PyQt 的窗口中显示这张图像。

提供一个下拉列表(QComboBox),对图像做(模糊、锐化、边缘检测)处理:
当用户点击下拉列表选项时,相应地更新窗口中显示的图像。

提供一个按钮,当用户点击按钮时,能保存调整后的图像。

思路分析

使用下拉列表将功能函数写入进去

设计到的函数方法
提供一个下拉列表(QComboBox)
模糊------使用cv2.GaussianBlur()实现

锐化------使用cv2.Laplacian()、cv2.Sobel()实现

边缘检测------使用cv2.Canny()实现

代码

python 复制代码
import cv2
import sys
import numpy as np
from PyQt6.QtGui import QPixmap, QImage
from PyQt6.QtWidgets import QApplication, QWidget, QLabel, QComboBox, QVBoxLayout


class MyWidget(QWidget):
   
    def __init__(self):
        super().__init__()

        self.resize(600, 400)

       
        self.lab3 = QLabel(self)
        self.lab3.resize(600, 400)
        self.lab3.setScaledContents(True)

     
        self.img = cv2.imread("./car5.png")
        self.update_image(self.img)

      
        self.combo_box = QComboBox(self)
        self.combo_box.addItem("请选择处理方式")
        self.combo_box.addItem("模糊")
        self.combo_box.addItem("锐化")
        self.combo_box.addItem("边缘检测")
        self.combo_box.currentIndexChanged.connect(self.process_image)  
        self.combo_box.move(10, 10)

    def update_image(self, img):
        
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
        h, w, ch = img_rgb.shape
        bytes_per_line = ch * w
        qimage = QImage(img_rgb.data, w, h, bytes_per_line, QImage.Format.Format_RGB888)
        pixmap = QPixmap.fromImage(qimage)

        self.lab3.setPixmap(pixmap)

    def process_image(self):
       
        selected_option = self.combo_box.currentText()

        if selected_option == "模糊":
         
            img_blurred = cv2.GaussianBlur(self.img, (15, 15), 0)
            self.update_image(img_blurred)

        elif selected_option == "锐化":
           
            kernel = np.array([[0, -1, 0], [-1, 5,-1], [0, -1, 0]])  
            img_sharpened = cv2.filter2D(self.img, -1, kernel)
            self.update_image(img_sharpened)

        elif selected_option == "边缘检测":
          
            img_gray = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY)
            img_edges = cv2.Canny(img_gray, 100, 200)
            img_edges_colored = cv2.cvtColor(img_edges, cv2.COLOR_GRAY2BGR)  
            self.update_image(img_edges_colored)

        else:
            self.update_image(self.img)


if __name__ == "__main__":
    app = QApplication(sys.argv)

    myWidget = MyWidget()

    myWidget.show()

    sys.exit(app.exec())

效果展示

相关推荐
青铜发条1 小时前
【Qt】PyQt、原生QT、PySide6三者的多方面比较
开发语言·qt·pyqt
Goona_1 天前
pyqt+python之二进制生肖占卜
pyqt
大学生毕业题目3 天前
毕业项目推荐:83-基于yolov8/yolov5/yolo11的农作物杂草检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·杂草识别
凯子坚持 c7 天前
当Python遇见高德:基于PyQt与JS API构建桌面三维地形图应用实战
javascript·python·pyqt·高德地图
Goona_7 天前
pyqt+Python证件号智能校验工具
pyqt
大学生毕业题目8 天前
毕业项目推荐:52-基于yolov8/yolov5/yolo11的红绿灯检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·红绿灯检测
大学生毕业题目9 天前
毕业项目推荐:64-基于yolov8/yolov5/yolo11的蝴蝶种类检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·蝴蝶检测
大学生毕业题目9 天前
毕业项目推荐:51-基于yolov8/yolov5/yolo11的反光衣检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·反光衣检测
深兰科技10 天前
柳州市委常委、统战部部长,副市长潘展东率队首访深兰科技集团新总部,共探 AI 赋能制造大市与东盟合作新局
人工智能·beautifulsoup·numpy·pyqt·matplotlib·pygame·深兰科技