Yolo算法中特征相似导致误报问题

训练目标检测时会碰到一种很奇怪的问题,明明两种目标有很大的差别但是却会被误识别,从而产生大量的误报,这种不利于生产。其实解决办法也很简单就是添加负样本 一起参与训练从而避免这种问题。

训练教程可以看我的系列专栏,里面有你想要的

yolov系列+C#_该醒醒了~的博客-CSDN博客

下面开始我们的教程

一、收集你的正样本和负样本,标注正样本,负样本不需要标直接保存

如下方的两种

正样本

负样本

也可以添加全局的正样本和负样本

二、标注

labelimg标注

正样本正常进行标注,负样本不需要标注直接 抗挫+S 保存就行

你要注意一点:你标注训练集中的正样本和负样本都是有txt标签文件的,唯一不同的是你负样本的txt标签文件中是空的,就如下:

里面什么都没有的

正样本是有内容的

将这两个标签和样本都放在你训练集中参与训练,然后预测推理就不会误报了。

相关推荐
大怪v11 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
IT_陈寒13 小时前
JavaScript 性能优化:5 个被低估的 V8 引擎技巧让你的代码快 200%
前端·人工智能·后端
惯导马工13 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
Juchecar13 小时前
一文讲清 PyTorch 中反向传播(Backpropagation)的实现原理
人工智能
黎燃13 小时前
游戏NPC的智能行为设计:从规则驱动到强化学习的演进
人工智能
机器之心14 小时前
高阶程序,让AI从技术可行到商业可信的最后一公里
人工智能·openai
martinzh14 小时前
解锁RAG高阶密码:自适应、多模态、个性化技术深度剖析
人工智能
机器之心14 小时前
刚刚,李飞飞空间智能新成果震撼问世!3D世界生成进入「无限探索」时代
人工智能·openai
scilwb14 小时前
Isaac Sim机械臂教程 - 阶段1:基础环境搭建与机械臂加载
人工智能·开源
骑自行车的码农14 小时前
【React用到的一些算法】游标和栈
算法·react.js