Yolo算法中特征相似导致误报问题

训练目标检测时会碰到一种很奇怪的问题,明明两种目标有很大的差别但是却会被误识别,从而产生大量的误报,这种不利于生产。其实解决办法也很简单就是添加负样本 一起参与训练从而避免这种问题。

训练教程可以看我的系列专栏,里面有你想要的

yolov系列+C#_该醒醒了~的博客-CSDN博客

下面开始我们的教程

一、收集你的正样本和负样本,标注正样本,负样本不需要标直接保存

如下方的两种

正样本

负样本

也可以添加全局的正样本和负样本

二、标注

labelimg标注

正样本正常进行标注,负样本不需要标注直接 抗挫+S 保存就行

你要注意一点:你标注训练集中的正样本和负样本都是有txt标签文件的,唯一不同的是你负样本的txt标签文件中是空的,就如下:

里面什么都没有的

正样本是有内容的

将这两个标签和样本都放在你训练集中参与训练,然后预测推理就不会误报了。

相关推荐
星星的月亮叫太阳10 小时前
large-scale-DRL-exploration 代码阅读 总结
python·算法
喜欢吃豆10 小时前
GraphRAG 技术教程:从核心概念到高级架构
人工智能·架构·大模型
王哈哈^_^10 小时前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测
..Cherry..10 小时前
Etcd详解(raft算法保证强一致性)
数据库·算法·etcd
AI浩10 小时前
FeatEnHancer:在低光视觉下增强目标检测及其他任务的分层特征
人工智能·目标检测·目标跟踪
深度学习lover11 小时前
<数据集>yolo航拍交通目标识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·航拍交通目标识别
商汤万象开发者11 小时前
LazyLLM教程 | 第13讲:RAG+多模态:图片、表格通吃的问答系统
人工智能·科技·算法·开源·多模态
IT管理圈11 小时前
AI agent正在重塑组织:麦肯锡的“智能体组织“解读
人工智能
YuanDaima204811 小时前
[CrewAI] 第5课|基于多智能体构建一个 AI 客服支持系统
人工智能·笔记·多智能体·智能体·crewai