Yolo算法中特征相似导致误报问题

训练目标检测时会碰到一种很奇怪的问题,明明两种目标有很大的差别但是却会被误识别,从而产生大量的误报,这种不利于生产。其实解决办法也很简单就是添加负样本 一起参与训练从而避免这种问题。

训练教程可以看我的系列专栏,里面有你想要的

yolov系列+C#_该醒醒了~的博客-CSDN博客

下面开始我们的教程

一、收集你的正样本和负样本,标注正样本,负样本不需要标直接保存

如下方的两种

正样本

负样本

也可以添加全局的正样本和负样本

二、标注

labelimg标注

正样本正常进行标注,负样本不需要标注直接 抗挫+S 保存就行

你要注意一点:你标注训练集中的正样本和负样本都是有txt标签文件的,唯一不同的是你负样本的txt标签文件中是空的,就如下:

里面什么都没有的

正样本是有内容的

将这两个标签和样本都放在你训练集中参与训练,然后预测推理就不会误报了。

相关推荐
CVer儿5 分钟前
svd分解求旋转平移矩阵
线性代数·算法·矩阵
Owen_Q12 分钟前
Denso Create Programming Contest 2025(AtCoder Beginner Contest 413)
开发语言·算法·职场和发展
MidJourney中文版24 分钟前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
王上上1 小时前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
智慧化智能化数字化方案1 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
PyAIExplorer1 小时前
图像旋转:从原理到 OpenCV 实践
人工智能·opencv·计算机视觉
Wilber的技术分享1 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19891 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm
Tanecious.1 小时前
LeetCode 876. 链表的中间结点
算法·leetcode·链表
burg_xun2 小时前
【Vibe Coding 实战】我如何用 AI 把一张草图变成了能跑的应用
人工智能