模式识别与机器学习 | 第七章 支持向量机

线性支持向量机/核支持向量机

间隔

分类器的置信度:

  • 概率 越大,y=1概率越大
  • 点到分离超平面H的距离反映了置信度

函数间隔:样本,它到**(w,b)确定的超平面** 的函数间隔

****模型对样本的预测正确

大的函数间隔->确信正确的预测

训练数据集的函数间隔,所有样本里最小的那个

几何间隔:

点到决策界面(直线wx+b=0)的距离

最优间隔分类器:间隔最大化

线性SVM(原始)

输入:数据集S

输出:判别函数

判别届面/分离超平面

参数w,b通过解决最优化间隔分类器问题

其中 支持向量 线性可分情况下,至少有两个不同类别的点在边界上

函数间隔

几何间隔

间隔

拉格朗日

约束条件

广义拉格朗日函数 (求解偏导为0)

拉格朗日对偶(原问题与对偶问题):

原问题为凸函数时,严格满足,可取"="

满足Karush-Kuhn-Tucker(KKT)条件:

kkT对偶互补性

最有间隔分类器 : 对偶解

利用KKT对偶互补性条件

支持向量的数量远小于训练样本的数目!

  • 固定α,有关于参数w,b最小化L得到

最大化θ,得到对偶问题最优解 d*

拉格朗日函数

求解w,b: 对w求偏导:

对b求偏导:

带入拉格朗日函数:

线性SVM(对偶)

输入:数据集S

输出:判别函数

判别届面/分离超平面

  • 通过求解对偶问题得到最优解α*
  • 得到原问题最优解w*,b*
软间隔

存在线性不可分的情况(有离群点或者噪声样本)但整体大部分仍可分

Hinge损失:

引入松驰变量ξ

  • 软间隔对偶问题

拉格朗日函数

固定α、η,求w,b,ξ,最小化L(求偏导,偏导为0),得到

最大化θ,得到最优值d*、η,

ps. C表示惩罚程度:C较大惩罚重;小则惩罚松,可以容忍分错

非线性可分SVM(对偶问题)

输入:数据集S

输出:判别函数,分类超平面

  • 选择参数C,通过求解对偶问题,得到最优解α*
  • 得到原问题最优解w*,b*
  • 判别函数

分离超平面

非线性SVM-核函数

利用核函数,将低维->高维,非线性变成线性可分

  • 非线性变换 ,将原来线性SVM问题中的x -> Φ(x)
  • 核函数:
  • 核技巧:学习和预测时,选择使用核函数K(x,z);学习过程在映射后得空间进行
  • **核函数定理:**x输入空间,k是x*x的对称的函数

K( , )是核函数 当且仅当 对任意数据D**,Gram矩阵总是半正定的**

常用核函数:

  • 多项式核

p=2

映射函数

多项分类器

  • 高斯核函数

g(x)K(x,z)g(z)仍是核函数,g(.)是任意函数

高斯核应用广, 超参少,有限维 -> 无限维

--

相关推荐
_codemonster18 分钟前
深度学习实战(基于pytroch)系列(三十五)循环神经网络的从零开始实现
人工智能·rnn·深度学习
【建模先锋】25 分钟前
基于多尺度卷积神经网络(MSCNN-1D)的轴承信号故障诊断模型
人工智能·神经网络·cnn·故障诊断·轴承故障诊断·西储大学轴承数据集
海棠AI实验室34 分钟前
图书馆版 RAG 系统:从馆藏到知识问答的一条完整链路
人工智能·rag·图书馆ai·知识服务
Coovally AI模型快速验证1 小时前
去噪扩散模型,根本不去噪?何恺明新论文回归「去噪」本质
人工智能·深度学习·算法·机器学习·计算机视觉·数据挖掘·回归
歌_顿2 小时前
attention、transform、bert 复习总结 1
人工智能·算法
snpgroupcn2 小时前
如何在SAP中实现数据验证自动化?5天缩短验证周期,提升转型效率的3大关键策略
运维·人工智能·自动化
Master_oid2 小时前
机器学习23:对抗攻击(adversarial attack)(上)
人工智能·机器学习
全知科技2 小时前
AI赋能数据分类分级,迈向智能化数据治理
大数据·人工智能
2501_941664962 小时前
人工智能赋能智慧金融互联网应用:智能风控、投资分析与客户管理实践探索》
人工智能
青云交2 小时前
Java 大视界 -- Java 大数据机器学习模型在电商用户画像构建与精准营销中的应用
java·大数据·机器学习·电商·协同过滤·用户画像·精准营销