模式识别与机器学习 | 第七章 支持向量机

线性支持向量机/核支持向量机

间隔

分类器的置信度:

  • 概率 越大,y=1概率越大
  • 点到分离超平面H的距离反映了置信度

函数间隔:样本,它到**(w,b)确定的超平面** 的函数间隔

****模型对样本的预测正确

大的函数间隔->确信正确的预测

训练数据集的函数间隔,所有样本里最小的那个

几何间隔:

点到决策界面(直线wx+b=0)的距离

最优间隔分类器:间隔最大化

线性SVM(原始)

输入:数据集S

输出:判别函数

判别届面/分离超平面

参数w,b通过解决最优化间隔分类器问题

其中 支持向量 线性可分情况下,至少有两个不同类别的点在边界上

函数间隔

几何间隔

间隔

拉格朗日

约束条件

广义拉格朗日函数 (求解偏导为0)

拉格朗日对偶(原问题与对偶问题):

原问题为凸函数时,严格满足,可取"="

满足Karush-Kuhn-Tucker(KKT)条件:

kkT对偶互补性

最有间隔分类器 : 对偶解

利用KKT对偶互补性条件

支持向量的数量远小于训练样本的数目!

  • 固定α,有关于参数w,b最小化L得到

最大化θ,得到对偶问题最优解 d*

拉格朗日函数

求解w,b: 对w求偏导:

对b求偏导:

带入拉格朗日函数:

线性SVM(对偶)

输入:数据集S

输出:判别函数

判别届面/分离超平面

  • 通过求解对偶问题得到最优解α*
  • 得到原问题最优解w*,b*
软间隔

存在线性不可分的情况(有离群点或者噪声样本)但整体大部分仍可分

Hinge损失:

引入松驰变量ξ

  • 软间隔对偶问题

拉格朗日函数

固定α、η,求w,b,ξ,最小化L(求偏导,偏导为0),得到

最大化θ,得到最优值d*、η,

ps. C表示惩罚程度:C较大惩罚重;小则惩罚松,可以容忍分错

非线性可分SVM(对偶问题)

输入:数据集S

输出:判别函数,分类超平面

  • 选择参数C,通过求解对偶问题,得到最优解α*
  • 得到原问题最优解w*,b*
  • 判别函数

分离超平面

非线性SVM-核函数

利用核函数,将低维->高维,非线性变成线性可分

  • 非线性变换 ,将原来线性SVM问题中的x -> Φ(x)
  • 核函数:
  • 核技巧:学习和预测时,选择使用核函数K(x,z);学习过程在映射后得空间进行
  • **核函数定理:**x输入空间,k是x*x的对称的函数

K( , )是核函数 当且仅当 对任意数据D**,Gram矩阵总是半正定的**

常用核函数:

  • 多项式核

p=2

映射函数

多项分类器

  • 高斯核函数

g(x)K(x,z)g(z)仍是核函数,g(.)是任意函数

高斯核应用广, 超参少,有限维 -> 无限维

--

相关推荐
说私域2 分钟前
AI智能名片链动2+1模式S2B2C商城小程序在客服沟通中的应用与效果
人工智能·小程序
S***t7144 分钟前
深度学习迁移学习应用
人工智能·深度学习·迁移学习
程序员哈基耄5 分钟前
当AI遇见塔罗:现代生活中的自我探索新方式
人工智能·生活
lucky_syq11 分钟前
再谈向量数据库:AI时代的存储新引擎
大数据·数据库·人工智能
IT_陈寒33 分钟前
Vue 3.4 性能优化实战:7个被低估的Composition API技巧让你的应用提速30%
前端·人工智能·后端
while(努力):进步1 小时前
人工智能与边缘计算结合在智能电网负荷预测与优化调度中的应用探索
人工智能·边缘计算
2501_941142131 小时前
边缘计算与5G结合在智慧交通信号优化与实时路况预测中的创新应用
人工智能·5g·边缘计算
Alang1 小时前
【LM-PDF】一个大模型时代的 PDF 极速预览方案是如何实现的?
前端·人工智能·后端
kupeThinkPoem2 小时前
代码生成工具Amazon CodeWhisperer介绍
人工智能
weixin79893765432...2 小时前
前端开发者如何拥抱 AI-Agent(科普)
人工智能·ai