libonnxruntime_providers_cuda.so with error: libcudnn_adv.so.9

在安装了 onnxruntime-gpu 后,使用 CUDA 时报错:

shell 复制代码
2025-01-02 11:40:03.935340441 [E:onnxruntime:Default, provider_bridge_ort.cc:1862 TryGetProviderInfo_CUDA] /onnxruntime_src/onnxruntime/core/session/provider_bridge_ort.cc:1539 onnxruntime::Provider& onnxruntime::ProviderLibrary::Get() [ONNXRuntimeError] : 1 : FAIL : Failed to load library libonnxruntime_providers_cuda.so with error: libcudnn_adv.so.9: cannot open shared object file: No such file or directory

2025-01-02 11:40:03.935371734 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:993 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Require cuDNN 9.* and CUDA 12.*. Please install all dependencies as mentioned in the GPU requirements page (https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#requirements), make sure they're in the PATH, and that your GPU is supported.

很明显,cudnn 并为正确配置。

首先需要说明:

PyTorch 的许多预编译版本(如通过 pip 或 conda 安装)会自带 CUDA 和 cuDNN。它会直接使用打包的版本,而不是依赖系统中全局安装的库。
ONNX Runtime 需要系统中明确安装且可用的 cuDNN 动态库

安装 cudnn,注意版本对应:

https://developer.nvidia.com/cudnn-downloads

shell 复制代码
proxychains4 wget https://developer.download.nvidia.com/compute/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-9.1.0.70_cuda12-arch
ive.tar.xz

解压下载的文件:

shell 复制代码
tar -xvf cudnn-linux-x86_64-9.1.0.70_cuda12-archive.tar.xz

解压后,会看到一个名为 cuda 的目录,包含以下子目录:

  • include/: 包含头文件,如 cudnn.h
  • lib/: 包含动态库,如 libcudnn.so

将解压出来的文件复制到系统的 CUDA 安装路径(默认路径是 /usr/local/cuda/):

shell 复制代码
sudo cp ./cudnn-linux-x86_64-9.1.0.70_cuda12-archive/include/* /usr/local/cuda-12.4/include/

sudo cp ./cudnn-linux-x86_64-9.1.0.70_cuda12-archive/lib/* /usr/local/cuda-12.4/lib64/

更新动态链接库缓存,以确保系统可以正确找到 cuDNN 的动态库文件:

检查 LD_LIBRARY_PATH 是否包含 /usr/local/cuda/lib64:

shell 复制代码
echo $LD_LIBRARY_PATH

如果没有包含,编辑 ~/.bashrc 文件,添加以下内容:

shell 复制代码
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
shell 复制代码
source ~/.bashrc

更新动态库缓存:

shell 复制代码
sudo ldconfig

验证 cuDNN 是否正确安装:

shell 复制代码
ls /usr/local/cuda/lib64 | grep libcudnn

输出:

shell 复制代码
libcudnn_adv.so
libcudnn_adv.so.9
libcudnn_adv.so.9.1.0
libcudnn_adv_static.a
libcudnn_adv_static_v9.a
libcudnn_cnn.so
...

检查 cuDNN 版本:

shell 复制代码
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

输出:

shell 复制代码
#define CUDNN_MAJOR 9
#define CUDNN_MINOR 1
#define CUDNN_PATCHLEVEL 0
相关推荐
hyshhhh17 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
Listennnn18 小时前
优雅的理解神经网络中的“分段线性单元”,解剖前向和反向传播
人工智能·深度学习·神经网络
牙牙要健康20 小时前
【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解
pytorch·深度学习·目标检测
Scc_hy20 小时前
强化学习_Paper_1988_Learning to predict by the methods of temporal differences
人工智能·深度学习·算法
誉鏐20 小时前
从零开始设计Transformer模型(1/2)——剥离RNN,保留Attention
人工智能·深度学习·transformer
神经星星21 小时前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
程序员Linc21 小时前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
补三补四1 天前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
荷包蛋蛋怪1 天前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类
贤小二AI1 天前
贤小二c#版Yolov5 yolov8 yolov10 yolov11自动标注工具 + 免python环境 GPU一键训练包
人工智能·深度学习·yolo