利用3DGS中convert.py处理自采数据

前言

3DGS源码中convert.py提供对自采数据集的处理,需要预先安装ColmapImageMagick.

ubuntu22.04安装colmap

点击进入NVIDIA官网,查看GPU的CMAKE_CUDA_ARCHITECTURES

1、克隆colmap源码,并进入colmap文件夹

复制代码
git clone https://github.com/colmap/colmap.git
cd colmap

2、打开终端,预先安装一些前置依赖

复制代码
sudo apt-get install \
    git cmake ninja-build  build-essential \
    libboost-program-options-dev libboost-filesystem-dev \
    libboost-graph-dev libboost-system-dev libboost-test-dev \
    libeigen3-dev libflann-dev libfreeimage-dev libmetis-dev \
    libgoogle-glog-dev \
    libgflags-dev libsqlite3-dev  libglew-dev qtbase5-dev libqt5opengl5-dev \
    libcgal-dev libceres-dev

3、新建build文件夹,并进入build文件夹

复制代码
mkdir build
cd build

4、使用 cmake 配置时,指明 CUDA 编译器路径和指定GPU 的计算能力架构

复制代码
sudo cmake .. \
      -D CMAKE_CUDA_COMPILER="/usr/local/cuda-11.8/bin/nvcc" ../CMakeLists.txt \
      -D CMAKE_CUDA_ARCHITECTURES='89'

CMAKE_CUDA_COMPILER是本机CUDA的路径,

CMAKE_CUDA_ARCHITECTURES是本机GPU的计算能力,4090显卡对应8.9。

5、退回上一级目录

复制代码
cd ..

6、 指定并行编译的线程数

复制代码
sudo make -j24

7、 开始安装

复制代码
sudo make install

ubuntu22.04安装ImageMagick

进入ImageMagick仓库,如下步骤安装

复制代码
wget https://imagemagick.org/archive/ImageMagick.tar.gz
tar -xzvf ImageMagick.tar.gz
cd ImageMagick-7.1.1-43
./configure
make
sudo make install
sudo ldconfig /usr/local/lib

convert.py

将自采数据集图片放于 <location>/input,在相应的文件夹中创建原始分辨率的1/2、1/4和1/8的图像。

复制代码
python convert.py -s <location> [--resize]

MyData
|---images
|   |---<image 0>
|   |---<image 1>
|   |---...
|---images_2
|   |---<image 0>
|   |---<image 1>
|   |---...
|---images_4
|   |---<image 0>
|   |---<image 1>
|   |---...
|---images_8
|   |---<image 0>
|   |---<image 1>
|   |---...
|---sparse
    |---0
        |---cameras.bin
        |---images.bin
        |---points3D.bin
相关推荐
Trent19851 小时前
影楼精修-肤色统一算法解析
图像处理·人工智能·算法·计算机视觉
kyle~4 小时前
计算机视觉---目标检测(Object Detecting)概览
人工智能·目标检测·计算机视觉
双翌视觉5 小时前
机器视觉对位手机中框点胶的应用
计算机视觉·机器视觉·视觉对位·视觉软件
白熊1885 小时前
【计算机视觉】OpenCV实战项目:基于OpenCV的车牌识别系统深度解析
人工智能·opencv·计算机视觉
胡耀超6 小时前
霍夫圆变换全面解析(OpenCV)
人工智能·python·opencv·算法·计算机视觉·数据挖掘·数据安全
jndingxin7 小时前
OpenCV CUDA 模块中用于在 GPU 上计算两个数组对应元素差值的绝对值函数absdiff(
人工智能·opencv·计算机视觉
硅谷秋水7 小时前
学习以任务为中心的潜动作,随地采取行动
人工智能·深度学习·计算机视觉·语言模型·机器人
Wnq100727 小时前
工业场景轮式巡检机器人纯视觉识别导航的优势剖析与前景展望
人工智能·算法·计算机视觉·激光雷达·视觉导航·人形机器人·巡检机器人
量子-Alex9 小时前
【目标检测】RT-DETR
人工智能·目标检测·计算机视觉
2201_754918419 小时前
OpenCV 图像透视变换详解
人工智能·opencv·计算机视觉