利用3DGS中convert.py处理自采数据

前言

3DGS源码中convert.py提供对自采数据集的处理,需要预先安装ColmapImageMagick.

ubuntu22.04安装colmap

点击进入NVIDIA官网,查看GPU的CMAKE_CUDA_ARCHITECTURES

1、克隆colmap源码,并进入colmap文件夹

复制代码
git clone https://github.com/colmap/colmap.git
cd colmap

2、打开终端,预先安装一些前置依赖

复制代码
sudo apt-get install \
    git cmake ninja-build  build-essential \
    libboost-program-options-dev libboost-filesystem-dev \
    libboost-graph-dev libboost-system-dev libboost-test-dev \
    libeigen3-dev libflann-dev libfreeimage-dev libmetis-dev \
    libgoogle-glog-dev \
    libgflags-dev libsqlite3-dev  libglew-dev qtbase5-dev libqt5opengl5-dev \
    libcgal-dev libceres-dev

3、新建build文件夹,并进入build文件夹

复制代码
mkdir build
cd build

4、使用 cmake 配置时,指明 CUDA 编译器路径和指定GPU 的计算能力架构

复制代码
sudo cmake .. \
      -D CMAKE_CUDA_COMPILER="/usr/local/cuda-11.8/bin/nvcc" ../CMakeLists.txt \
      -D CMAKE_CUDA_ARCHITECTURES='89'

CMAKE_CUDA_COMPILER是本机CUDA的路径,

CMAKE_CUDA_ARCHITECTURES是本机GPU的计算能力,4090显卡对应8.9。

5、退回上一级目录

复制代码
cd ..

6、 指定并行编译的线程数

复制代码
sudo make -j24

7、 开始安装

复制代码
sudo make install

ubuntu22.04安装ImageMagick

进入ImageMagick仓库,如下步骤安装

复制代码
wget https://imagemagick.org/archive/ImageMagick.tar.gz
tar -xzvf ImageMagick.tar.gz
cd ImageMagick-7.1.1-43
./configure
make
sudo make install
sudo ldconfig /usr/local/lib

convert.py

将自采数据集图片放于 <location>/input,在相应的文件夹中创建原始分辨率的1/2、1/4和1/8的图像。

复制代码
python convert.py -s <location> [--resize]

MyData
|---images
|   |---<image 0>
|   |---<image 1>
|   |---...
|---images_2
|   |---<image 0>
|   |---<image 1>
|   |---...
|---images_4
|   |---<image 0>
|   |---<image 1>
|   |---...
|---images_8
|   |---<image 0>
|   |---<image 1>
|   |---...
|---sparse
    |---0
        |---cameras.bin
        |---images.bin
        |---points3D.bin
相关推荐
不爱写代码的玉子1 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study1 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz1 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
春末的南方城市2 小时前
港科大&快手提出统一上下文视频编辑 UNIC,各种视频编辑任务一网打尽,还可进行多项任务组合!
人工智能·计算机视觉·stable diffusion·aigc·transformer
且慢.5894 小时前
Python_day47
python·深度学习·计算机视觉
Unpredictable2224 小时前
【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
c++·笔记·算法·ubuntu·计算机视觉
一勺汤9 小时前
YOLO12 改进|融入 Mamba 架构:插入视觉状态空间模块 VSS Block 的硬核升级
yolo·计算机视觉·mamba·yolov12·yolo12·yolo12该机·yolo12 mamba
YYXZZ。。10 小时前
PyTorch——优化器(9)
pytorch·深度学习·计算机视觉
新知图书11 小时前
OpenCV为图像添加边框
人工智能·opencv·计算机视觉
carpell12 小时前
【语义分割专栏】3:Segnet原理篇
人工智能·python·深度学习·计算机视觉·语义分割