利用3DGS中convert.py处理自采数据

前言

3DGS源码中convert.py提供对自采数据集的处理,需要预先安装ColmapImageMagick.

ubuntu22.04安装colmap

点击进入NVIDIA官网,查看GPU的CMAKE_CUDA_ARCHITECTURES

1、克隆colmap源码,并进入colmap文件夹

复制代码
git clone https://github.com/colmap/colmap.git
cd colmap

2、打开终端,预先安装一些前置依赖

复制代码
sudo apt-get install \
    git cmake ninja-build  build-essential \
    libboost-program-options-dev libboost-filesystem-dev \
    libboost-graph-dev libboost-system-dev libboost-test-dev \
    libeigen3-dev libflann-dev libfreeimage-dev libmetis-dev \
    libgoogle-glog-dev \
    libgflags-dev libsqlite3-dev  libglew-dev qtbase5-dev libqt5opengl5-dev \
    libcgal-dev libceres-dev

3、新建build文件夹,并进入build文件夹

复制代码
mkdir build
cd build

4、使用 cmake 配置时,指明 CUDA 编译器路径和指定GPU 的计算能力架构

复制代码
sudo cmake .. \
      -D CMAKE_CUDA_COMPILER="/usr/local/cuda-11.8/bin/nvcc" ../CMakeLists.txt \
      -D CMAKE_CUDA_ARCHITECTURES='89'

CMAKE_CUDA_COMPILER是本机CUDA的路径,

CMAKE_CUDA_ARCHITECTURES是本机GPU的计算能力,4090显卡对应8.9。

5、退回上一级目录

复制代码
cd ..

6、 指定并行编译的线程数

复制代码
sudo make -j24

7、 开始安装

复制代码
sudo make install

ubuntu22.04安装ImageMagick

进入ImageMagick仓库,如下步骤安装

复制代码
wget https://imagemagick.org/archive/ImageMagick.tar.gz
tar -xzvf ImageMagick.tar.gz
cd ImageMagick-7.1.1-43
./configure
make
sudo make install
sudo ldconfig /usr/local/lib

convert.py

将自采数据集图片放于 <location>/input,在相应的文件夹中创建原始分辨率的1/2、1/4和1/8的图像。

复制代码
python convert.py -s <location> [--resize]

MyData
|---images
|   |---<image 0>
|   |---<image 1>
|   |---...
|---images_2
|   |---<image 0>
|   |---<image 1>
|   |---...
|---images_4
|   |---<image 0>
|   |---<image 1>
|   |---...
|---images_8
|   |---<image 0>
|   |---<image 1>
|   |---...
|---sparse
    |---0
        |---cameras.bin
        |---images.bin
        |---points3D.bin
相关推荐
星期天要睡觉5 小时前
计算机视觉(opencv)——基于 OpenCV DNN 的实时人脸检测 + 年龄与性别识别
opencv·计算机视觉·dnn
算法打盹中9 小时前
计算机视觉:基于 YOLO 的轻量级目标检测与自定义目标跟踪原理与代码框架实现
图像处理·yolo·目标检测·计算机视觉·目标跟踪
sali-tec11 小时前
C# 基于halcon的视觉工作流-章42-手动识别文本
开发语言·人工智能·算法·计算机视觉·c#·ocr
AndrewHZ15 小时前
【图像处理基石】暗光增强算法入门:从原理到实战(Python+OpenCV)
图像处理·python·opencv·算法·计算机视觉·cv·暗光增强
七元权16 小时前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
研梦非凡19 小时前
ShapeLLM: 用于具身交互的全面3D物体理解
人工智能·深度学习·计算机视觉·3d·架构·数据分析
CoovallyAIHub20 小时前
YOLO26学界首评:四大革新点究竟有多强?
深度学习·算法·计算机视觉
2401_8414956420 小时前
【计算机视觉】霍夫变换函数的参数调整
人工智能·python·算法·计算机视觉·霍夫变换·直线检测·调整策略
bylander21 小时前
【论文阅读】通义实验室,VACE: All-in-One Video Creation and Editing
论文阅读·人工智能·计算机视觉·音视频
AndrewHZ1 天前
【图像处理基石】GIS图像处理入门:4个核心算法与Python实现(附完整代码)
图像处理·python·算法·计算机视觉·gis·cv·地理信息系统