偏振测量——典型光学元件的穆勒矩阵

斯托克斯向量(Stokes Vector)为1*4向量,可用于描述偏振光的状态,其四个元素分别代表总光强S0,垂直或水平方向线偏振分量S1,正负45度线偏振分量S2,圆偏振分量S3。

当一束光经过某个器件时,其偏振态发生变化,对应到斯托克斯向量的变化。在数学上即可考虑到用一个4*4的矩阵描述该器件对光的偏振态的影响,这个矩阵就是穆勒矩阵。这里记录一些典型光学元件的穆勒矩阵以供查询。

线性偏振片(偏振方向为0度)

玻片(waveplate 或补偿器compensator 或延迟器retarder),其中phi为玻片的延迟量,快轴角度为0

另外,穆勒矩阵的旋转矩阵如下,其中theta为旋转角度

一个光学元件旋转一定角度后,其穆勒矩阵可以如下计算:

进而可以求得任意玻片和偏振片旋转一定角度后的穆勒矩阵。

以下python代码

python 复制代码
import numpy as np

def WavePlate(delta):
    Mwp = np.zeros([4, 4])
    Mwp[0, 0] = 1
    Mwp[1, 1] = 1
    Mwp[2, 2] = np.cos(delta)
    Mwp[3, 3] = np.cos(delta)
    Mwp[2, 3] = -np.sin(delta)
    Mwp[3, 2] = np.sin(delta)
    return Mwp
def RotateMatrix(theta):
    R = np.zeros([4,4])
    R[0, 0] = 1
    R[3, 3] = 1
    R[1, 1] = np.cos(2 * theta)
    R[2, 2] = np.cos(2 * theta)
    R[1, 2] = np.sin(2 * theta)
    R[2, 1] = -np.sin(2 * theta)
    return R

def rotate(M,theta):
    R1 = RotateMatrix(theta)
    R2 = RotateMatrix(-theta)
    return R2@M@R1

Mp = np.zeros([4,4])
Mp[0:2,0:2]=1
print('角度为0度的线性偏振片穆勒矩阵: \n',Mp)
print('角度为45度的线性偏振片穆勒矩阵: \n',np.round(rotate(Mp,np.pi/4)))
print('角度为-45度的线性偏振片穆勒矩阵: \n',np.round(rotate(Mp,-np.pi/4)))
print('角度为90度的线性偏振片穆勒矩阵: \n',np.round(rotate(Mp,np.pi/2)))

delta1 = np.pi/4 #四分之一玻片
delta2 = np.pi/2 #半玻片

print('快轴角度为0度的四分之一玻片穆勒矩阵: \n',np.round(WavePlate(delta1),2))
print('快轴角度为90度的四分之一玻片穆勒矩阵: \n',np.round(rotate(WavePlate(delta1),np.pi/2),2))
print('快轴角度为0度的半玻片穆勒矩阵: \n',np.round(WavePlate(delta2),2))
print('快轴角度为90度的半玻片穆勒矩阵: \n',np.round(rotate(WavePlate(delta2),np.pi/2),2))

运行结果:

python 复制代码
角度为0度的线性偏振片穆勒矩阵: 
 [[1. 1. 0. 0.]
 [1. 1. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
角度为45度的线性偏振片穆勒矩阵: 
 [[1. 0. 1. 0.]
 [0. 0. 0. 0.]
 [1. 0. 1. 0.]
 [0. 0. 0. 0.]]
角度为-45度的线性偏振片穆勒矩阵: 
 [[ 1.  0. -1.  0.]
 [ 0.  0. -0.  0.]
 [-1. -0.  1.  0.]
 [ 0.  0.  0.  0.]]
角度为90度的线性偏振片穆勒矩阵: 
 [[ 1. -1.  0.  0.]
 [-1.  1. -0.  0.]
 [ 0. -0.  0.  0.]
 [ 0.  0.  0.  0.]]
快轴角度为0度的四分之一玻片穆勒矩阵: 
 [[ 1.    0.    0.    0.  ]
 [ 0.    1.    0.    0.  ]
 [ 0.    0.    0.71 -0.71]
 [ 0.    0.    0.71  0.71]]
快轴角度为90度的四分之一玻片穆勒矩阵: 
 [[ 1.    0.    0.    0.  ]
 [ 0.    1.   -0.    0.  ]
 [ 0.   -0.    0.71  0.71]
 [ 0.   -0.   -0.71  0.71]]
快轴角度为0度的半玻片穆勒矩阵: 
 [[ 1.  0.  0.  0.]
 [ 0.  1.  0.  0.]
 [ 0.  0.  0. -1.]
 [ 0.  0.  1.  0.]]
快轴角度为90度的半玻片穆勒矩阵: 
 [[ 1.  0.  0.  0.]
 [ 0.  1. -0.  0.]
 [ 0. -0.  0.  1.]
 [ 0. -0. -1.  0.]]
相关推荐
Psycho_MrZhang43 分钟前
高并发服务设计思路
python
多米Domi0111 小时前
0x3f 第21天 三更java进阶1-35 hot100普通数组
java·python·算法·leetcode·动态规划
小程故事多_801 小时前
从零吃透PyTorch,最易懂的入门全指南
人工智能·pytorch·python
Keep_Trying_Go2 小时前
基于无监督backbone无需训练的类别无关目标统计CountingDINO算法详解
人工智能·python·算法·多模态·目标统计
weixin_433179333 小时前
python - for循环,字符串,元组基础
开发语言·python
^哪来的&永远~3 小时前
Python 轻量级 UI:EEG 与 fNIRS 预处理图形界面
python·可视化·功能连接·eeg·mne·fnirs·eeglab
AI大佬的小弟3 小时前
Python基础(11):Python中函数参数的进阶模式详解
python·lambda函数·函数的参数解释·函数的参数进阶·位置参数·关键词参数·匿名函数与普通函数
智算菩萨3 小时前
Python可以做哪些小游戏——基于Python 3.13最新特性的游戏开发全指南(15万字超长文章,强烈建议收藏阅读)
python·pygame
智航GIS3 小时前
9.1 多线程入门
java·开发语言·python
nvd113 小时前
FastMCP 开发指南: 5分钟入门
人工智能·python