线代常见题型总结

文章目录


一、行列式的计算

上三角行列式和下三角行列式的结果都为主对角线元素之积

1.三阶行列式

化为上三角行行列式计算

2.含未知数行列式

先将所有的列都加到第一列后提公因子,再化上三角

3.范德蒙行列式

特点:后减前 如: ( x 2 − x 1 ) ( x 3 − x 1 ) ( x 3 − x 2 ) (x_{2}-x_{1})(x_{3}-x_{1})(x_{3}-x_{2}) (x2−x1)(x3−x1)(x3−x2)

变形:

4.爪型行列式

计算方法:


变形:

5.余子式(M)和代数余子式(A)

概念:

  1. 行列式展开定理(某一行/列0较多情况下可用):

    例题:
  2. 替换法:

    变形:

    将其转换为余子式A,然后再通过替换法计算

6.拆合法

7.拉普拉斯公式

例题:

二、矩阵

1.矩阵的乘法

2.抽象矩阵求逆矩阵

例题:

3.数字型矩阵求逆

例题:

  1. 三阶行列式

  2. 二阶行列式
    用【定理】或者【行变换】即可
    定理:若 ∣ A ∣ ≠ 0 ,则 A 可逆,且 A − 1 = 1 ∣ A ∣ A ∗ 定理:若|A|≠0,则A可逆,且{\displaystyle A^{-1}={\frac {1}{|A|}}A^{*}} 定理:若∣A∣=0,则A可逆,且A−1=∣A∣1A∗

例题:

4.求解矩阵方程

特点:

伴随矩阵的性质:
A A ∗ = A ∗ A = ∣ A ∣ E A ∗ = ∣ A ∣ A − 1 AA^{*} = A^{*}A = |A|E\\ A* = |A|A^{-1} AA∗=A∗A=∣A∣EA∗=∣A∣A−1

注意矩阵乘法的顺序

例题:

  1. 数字型

  2. 含伴随:

5.方阵的行列式

公式:

例题:

6.矩阵的秩

化为行阶梯形即可得出R(无须化到最简)

三、向量组的线性相关性

1.判断向量组的线性相关性(数字型)

知识点:

例题:

  1. 例1

  2. 例2

2.判断向量组的线性相关性(抽象型)

知识点:

  1. 用定义:若存在系数,使向量组的和为0,则线性相关,反之无关
  2. 用下面方法

例题:

3.求向量组的秩与极大无关组

知识点:

例题:

四、线性方程组

1.齐次方程组(A·X=0)的求解

知识点:

例题:

2.非齐次方程组的求解

知识点:

例题:

3.带参数方程组的求解

例题:

五、矩阵的特征值与特征向量

1.特征值与特征向量的求法(数字型)

知识点:

例题




2.特征值与特征向量的求法(抽象型)

知识点:

例题:

3.矩阵的相似对角化

知识点:

  1. 不对称阵求可逆阵
  2. 对称阵求正交阵

例题:

  1. 不对称阵

  2. 对称阵

相关推荐
X-future42612 小时前
院校机试刷题第六天:1134矩阵翻转、1052学生成绩管理、1409对称矩阵
线性代数·算法·矩阵
九州ip动态1 天前
自媒体工作室如何矩阵?自媒体矩阵养号策略
线性代数·矩阵·媒体
田梓燊1 天前
数学复习笔记 19
笔记·线性代数·机器学习
田梓燊2 天前
数学复习笔记 12
笔记·线性代数·机器学习
jerry6092 天前
LLM笔记(六)线性代数
笔记·学习·线性代数·自然语言处理
田梓燊2 天前
数学复习笔记 14
笔记·线性代数·矩阵
田梓燊3 天前
数学复习笔记 15
笔记·线性代数·机器学习
Magnum Lehar3 天前
3d游戏引擎的math矩阵实现
线性代数·矩阵·游戏引擎
HappyAcmen3 天前
线代第二章矩阵第九、十节:初等变换、矩阵的标准形、阶梯形与行最简阶梯形、初等矩阵
笔记·学习·线性代数·矩阵
人类发明了工具3 天前
【优化算法】协方差矩阵自适应进化策略(Covariance Matrix Adaptation Evolution Strategy,CMA-ES)
线性代数·算法·矩阵·cma-es