线代常见题型总结

文章目录


一、行列式的计算

上三角行列式和下三角行列式的结果都为主对角线元素之积

1.三阶行列式

化为上三角行行列式计算

2.含未知数行列式

先将所有的列都加到第一列后提公因子,再化上三角

3.范德蒙行列式

特点:后减前 如: ( x 2 − x 1 ) ( x 3 − x 1 ) ( x 3 − x 2 ) (x_{2}-x_{1})(x_{3}-x_{1})(x_{3}-x_{2}) (x2−x1)(x3−x1)(x3−x2)

变形:

4.爪型行列式

计算方法:


变形:

5.余子式(M)和代数余子式(A)

概念:

  1. 行列式展开定理(某一行/列0较多情况下可用):

    例题:
  2. 替换法:

    变形:

    将其转换为余子式A,然后再通过替换法计算

6.拆合法

7.拉普拉斯公式

例题:

二、矩阵

1.矩阵的乘法

2.抽象矩阵求逆矩阵

例题:

3.数字型矩阵求逆

例题:

  1. 三阶行列式

  2. 二阶行列式
    用【定理】或者【行变换】即可
    定理:若 ∣ A ∣ ≠ 0 ,则 A 可逆,且 A − 1 = 1 ∣ A ∣ A ∗ 定理:若|A|≠0,则A可逆,且{\displaystyle A^{-1}={\frac {1}{|A|}}A^{*}} 定理:若∣A∣=0,则A可逆,且A−1=∣A∣1A∗

例题:

4.求解矩阵方程

特点:

伴随矩阵的性质:
A A ∗ = A ∗ A = ∣ A ∣ E A ∗ = ∣ A ∣ A − 1 AA^{*} = A^{*}A = |A|E\\ A* = |A|A^{-1} AA∗=A∗A=∣A∣EA∗=∣A∣A−1

注意矩阵乘法的顺序

例题:

  1. 数字型

  2. 含伴随:

5.方阵的行列式

公式:

例题:

6.矩阵的秩

化为行阶梯形即可得出R(无须化到最简)

三、向量组的线性相关性

1.判断向量组的线性相关性(数字型)

知识点:

例题:

  1. 例1

  2. 例2

2.判断向量组的线性相关性(抽象型)

知识点:

  1. 用定义:若存在系数,使向量组的和为0,则线性相关,反之无关
  2. 用下面方法

例题:

3.求向量组的秩与极大无关组

知识点:

例题:

四、线性方程组

1.齐次方程组(A·X=0)的求解

知识点:

例题:

2.非齐次方程组的求解

知识点:

例题:

3.带参数方程组的求解

例题:

五、矩阵的特征值与特征向量

1.特征值与特征向量的求法(数字型)

知识点:

例题




2.特征值与特征向量的求法(抽象型)

知识点:

例题:

3.矩阵的相似对角化

知识点:

  1. 不对称阵求可逆阵
  2. 对称阵求正交阵

例题:

  1. 不对称阵

  2. 对称阵

相关推荐
AI科技星1 天前
统一场论理论下理解物体在不同运动状态的本质
人工智能·线性代数·算法·机器学习·概率论
TTGGGFF2 天前
控制系统建模仿真(三):矩阵分析、微分方程与最优化求解
线性代数·矩阵
sonadorje2 天前
SVD:如何把一个矩阵拆解成三个部分?
线性代数·矩阵
劈星斩月2 天前
线性代数-3Blue1Brown《线性代数的本质》点积与对偶性(9)
线性代数·点积与对偶性
weisian1512 天前
进阶篇-3-数学篇-2--从线性代数到AI:向量、矩阵、张量的底层逻辑
人工智能·线性代数·矩阵·向量·张量
张祥6422889042 天前
线性代数本质十笔记
笔记·线性代数·机器学习
技术民工之路3 天前
MATLAB线性方程组,运算符、inv()、pinv()全解析
线性代数·算法·matlab
a3535413823 天前
牛顿迭代法中的雅克比矩阵几何意义
线性代数·算法
FL171713143 天前
黎曼几何/黎曼流形/黎曼度规/黎曼度量
线性代数
小尧嵌入式3 天前
【Linux开发二】数字反转|除数累加|差分数组|vector插入和访问|小数四舍五入及向上取整|矩阵逆置|基础文件IO|深入文件IO
linux·服务器·开发语言·c++·线性代数·算法·矩阵