pytorch索引操作函数介绍

PyTorch 提供了一系列强大的索引操作函数,用于高效地操作张量数据。以下是常用的 PyTorch 索引操作函数及其用途:


1. 基础索引操作

这些操作类似于 NumPy 的基本索引方式。

1.1 方括号索引 ([])

  • 支持 切片布尔索引高级索引

  • 示例:

    x = torch.tensor([[10, 20, 30], [40, 50, 60]])
    print(x[0, 1]) # 取第 0 行第 1 列,输出 20
    print(x[:, 1]) # 取所有行的第 1 列,输出 tensor([20, 50])
    print(x[1]) # 取第 1 行,输出 tensor([40, 50, 60])

2. 索引操作函数

2.1 torch.index_select

按指定维度的索引提取元素。

  • 用法

    torch.index_select(input, dim, index, *, out=None)

  • 参数

    • input:输入张量。
    • dim:指定的维度。
    • index:索引张量,必须是一维张量。
  • 示例

    x = torch.tensor([[10, 20, 30], [40, 50, 60]])
    index = torch.tensor([0, 2])
    result = torch.index_select(x, dim=1, index=index)
    print(result) # 输出 tensor([[10, 30], [40, 60]])

2.2 torch.gather

根据索引张量,从输入张量中收集数据。

  • 用法

    torch.gather(input, dim, index, *, sparse_grad=False, out=None)

  • 参数

    • input:输入张量。
    • dim:指定的维度。
    • index:索引张量,必须与输入张量形状兼容。
  • 示例

    x = torch.tensor([[10, 20, 30], [40, 50, 60]])
    index = torch.tensor([[0, 2], [1, 0]])
    result = torch.gather(x, dim=1, index=index)
    print(result) # 输出 tensor([[10, 30], [50, 40]])

2.3 torch.scatter

将源张量的值按索引写入目标张量。

  • 用法

    torch.scatter(input, dim, index, src, *, reduce=None)

示例

复制代码
x = torch.zeros(2, 3)
index = torch.tensor([[0, 1, 2], [0, 1, 2]])
src = torch.tensor([[10., 20., 30.], [40., 50., 60.]])
result = torch.scatter(x, dim=1, index=index, src=src)
print(result)  # 输出 tensor([[10., 20., 30.], [40., 50., 60.]])

2.4 torch.take

按照扁平化索引从张量中提取元素。

  • 用法

    torch.take(input, index)

示例

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
index = torch.tensor([0, 2, 5])
result = torch.take(x, index)
print(result)  # 输出 tensor([10, 30, 60])

torch.gather和 torch.scatter区别

特性 torch.gather torch.scatter
作用 从指定位置提取数据 向指定位置写入数据
索引意义 定义要从 input 中提取数据的位置 定义要向 input 中写入数据的位置
输出形状 index 形状相同 input 形状相同
操作方向 input 提取值 src 的值写入到 input
使用场景 数据提取(如选择性采样) 数据写入(如更新某些特定位置的值)

2.5 torch.masked_select

根据布尔掩码从张量中提取元素。

  • 用法

    torch.masked_select(input, mask, *, out=None)

示例

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
mask = x > 30
result = torch.masked_select(x, mask)
print(result)  # 输出 tensor([40, 50, 60])

2.6 torch.nonzero

返回所有非零元素的索引。

  • 用法

    torch.nonzero(input, *, as_tuple=False)

示例

复制代码
x = torch.tensor([[0, 1, 0], [2, 0, 3]])
result = torch.nonzero(x)
print(result)  # 输出 tensor([[0, 1], [1, 0], [1, 2]])

2.7 torch.where

根据条件选择值。

  • 用法

    torch.where(condition, x, y)

示例

复制代码
x = torch.tensor([1, 2, 3])
y = torch.tensor([10, 20, 30])
condition = x > 1
result = torch.where(condition, x, y)
print(result)  # 输出 tensor([10,  2,  3])

2.8 torch.advanced_indexing

  • PyTorch 支持 布尔张量索引整形张量索引

  • 示例:

    x = torch.tensor([[10, 20, 30], [40, 50, 60]])
    index = torch.tensor([[0, 1], [1, 0]])
    result = x[index]
    print(result)

输出:

复制代码
tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

注:第0维度操作

3. 总结

函数 功能
torch.index_select 按指定维度和索引提取元素
torch.gather 根据索引张量从输入中收集元素
torch.scatter 按索引将源张量的值写入目标张量
torch.take 按扁平化索引从张量中提取元素
torch.masked_select 根据布尔掩码从张量中提取元素
torch.nonzero 找出非零元素的索引
torch.where 根据条件选择元素

这些索引操作函数可以帮助简化张量操作,提高代码效率。

相关推荐
互联科技报1 分钟前
2025年外贸管理软件排行榜
人工智能
九河云2 分钟前
华为云 Flexus 对象存储:高可靠低成本双引擎,筑牢企业数据根基
服务器·网络·人工智能·科技·华为云
程序员爱钓鱼5 分钟前
Python编程实战 | 函数与模块化编程 - 第三方库的安装与管理(pip使用)
后端·python·ipython
国服第二切图仔5 分钟前
Rust开发之Result枚举与?运算符简化错误传播
开发语言·python·rust
程序员爱钓鱼7 分钟前
Python编程实战 | 面向对象与进阶语法-类与对象的概念
后端·python·ipython
飞哥数智坊9 分钟前
AI时代,Know-what比Know-how更重要
人工智能
AI人工智能+13 分钟前
医疗器械经营许可证识别技术通过OCR与AI技术实现资质信息自动提取,显著提升行业效率与合规管理水平
人工智能·ocr·医疗器械经营许可证识别
伊布拉西莫22 分钟前
spring-ai advisors 使用与源码分析
java·人工智能·spring
九年义务漏网鲨鱼25 分钟前
【Agentic RL 专题】二、Agentic RL——Memory
人工智能·大模型·强化学习·记忆模块
美狐美颜SDK开放平台28 分钟前
直播美颜sdk特效功能架构全解析:从图像处理到AI渲染的技术演进
图像处理·人工智能·算法·架构·1024程序员节·美颜sdk·直播美颜sdk