pytorch索引操作函数介绍

PyTorch 提供了一系列强大的索引操作函数,用于高效地操作张量数据。以下是常用的 PyTorch 索引操作函数及其用途:


1. 基础索引操作

这些操作类似于 NumPy 的基本索引方式。

1.1 方括号索引 ([])

  • 支持 切片布尔索引高级索引

  • 示例:

    x = torch.tensor([[10, 20, 30], [40, 50, 60]])
    print(x[0, 1]) # 取第 0 行第 1 列,输出 20
    print(x[:, 1]) # 取所有行的第 1 列,输出 tensor([20, 50])
    print(x[1]) # 取第 1 行,输出 tensor([40, 50, 60])

2. 索引操作函数

2.1 torch.index_select

按指定维度的索引提取元素。

  • 用法

    torch.index_select(input, dim, index, *, out=None)

  • 参数

    • input:输入张量。
    • dim:指定的维度。
    • index:索引张量,必须是一维张量。
  • 示例

    x = torch.tensor([[10, 20, 30], [40, 50, 60]])
    index = torch.tensor([0, 2])
    result = torch.index_select(x, dim=1, index=index)
    print(result) # 输出 tensor([[10, 30], [40, 60]])

2.2 torch.gather

根据索引张量,从输入张量中收集数据。

  • 用法

    torch.gather(input, dim, index, *, sparse_grad=False, out=None)

  • 参数

    • input:输入张量。
    • dim:指定的维度。
    • index:索引张量,必须与输入张量形状兼容。
  • 示例

    x = torch.tensor([[10, 20, 30], [40, 50, 60]])
    index = torch.tensor([[0, 2], [1, 0]])
    result = torch.gather(x, dim=1, index=index)
    print(result) # 输出 tensor([[10, 30], [50, 40]])

2.3 torch.scatter

将源张量的值按索引写入目标张量。

  • 用法

    torch.scatter(input, dim, index, src, *, reduce=None)

示例

复制代码
x = torch.zeros(2, 3)
index = torch.tensor([[0, 1, 2], [0, 1, 2]])
src = torch.tensor([[10., 20., 30.], [40., 50., 60.]])
result = torch.scatter(x, dim=1, index=index, src=src)
print(result)  # 输出 tensor([[10., 20., 30.], [40., 50., 60.]])

2.4 torch.take

按照扁平化索引从张量中提取元素。

  • 用法

    torch.take(input, index)

示例

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
index = torch.tensor([0, 2, 5])
result = torch.take(x, index)
print(result)  # 输出 tensor([10, 30, 60])

torch.gather和 torch.scatter区别

特性 torch.gather torch.scatter
作用 从指定位置提取数据 向指定位置写入数据
索引意义 定义要从 input 中提取数据的位置 定义要向 input 中写入数据的位置
输出形状 index 形状相同 input 形状相同
操作方向 input 提取值 src 的值写入到 input
使用场景 数据提取(如选择性采样) 数据写入(如更新某些特定位置的值)

2.5 torch.masked_select

根据布尔掩码从张量中提取元素。

  • 用法

    torch.masked_select(input, mask, *, out=None)

示例

复制代码
x = torch.tensor([[10, 20, 30], [40, 50, 60]])
mask = x > 30
result = torch.masked_select(x, mask)
print(result)  # 输出 tensor([40, 50, 60])

2.6 torch.nonzero

返回所有非零元素的索引。

  • 用法

    torch.nonzero(input, *, as_tuple=False)

示例

复制代码
x = torch.tensor([[0, 1, 0], [2, 0, 3]])
result = torch.nonzero(x)
print(result)  # 输出 tensor([[0, 1], [1, 0], [1, 2]])

2.7 torch.where

根据条件选择值。

  • 用法

    torch.where(condition, x, y)

示例

复制代码
x = torch.tensor([1, 2, 3])
y = torch.tensor([10, 20, 30])
condition = x > 1
result = torch.where(condition, x, y)
print(result)  # 输出 tensor([10,  2,  3])

2.8 torch.advanced_indexing

  • PyTorch 支持 布尔张量索引整形张量索引

  • 示例:

    x = torch.tensor([[10, 20, 30], [40, 50, 60]])
    index = torch.tensor([[0, 1], [1, 0]])
    result = x[index]
    print(result)

输出:

复制代码
tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

注:第0维度操作

3. 总结

函数 功能
torch.index_select 按指定维度和索引提取元素
torch.gather 根据索引张量从输入中收集元素
torch.scatter 按索引将源张量的值写入目标张量
torch.take 按扁平化索引从张量中提取元素
torch.masked_select 根据布尔掩码从张量中提取元素
torch.nonzero 找出非零元素的索引
torch.where 根据条件选择元素

这些索引操作函数可以帮助简化张量操作,提高代码效率。

相关推荐
m0_563745114 小时前
误差卡尔曼滤波在VINS-mono中的应用
人工智能·机器学习
yukai080084 小时前
【最后203篇系列】039 JWT使用
python
恣逍信点4 小时前
《凌微经 · 理悖相涵》第六章 理悖相涵——关系构型之模因
人工智能·科技·程序人生·生活·交友·哲学
晚霞的不甘4 小时前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频
小程故事多_804 小时前
Agent Infra核心技术解析:Sandbox sandbox技术原理、选型逻辑与主流方案全景
java·开发语言·人工智能·aigc
陈天伟教授5 小时前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译
独好紫罗兰5 小时前
对python的再认识-基于数据结构进行-a006-元组-拓展
开发语言·数据结构·python
Dfreedom.5 小时前
图像直方图完全解析:从原理到实战应用
图像处理·python·opencv·直方图·直方图均衡化
人机与认知实验室5 小时前
一些容易被人工智能取代的职业
人工智能
茶栀(*´I`*)5 小时前
【NLP入门笔记】:自然语言处理基础与文本预处理
人工智能·自然语言处理·nlp