【漫话机器学习系列】039.点积(dot product)

点积(Dot Product)

点积是线性代数中的一种基本运算,用于两个向量的操作。它是将两个向量按分量相乘并求和的结果,用于衡量两个向量在同一方向上的相似性。


点积的定义

给定两个相同维度的向量 ,它们的点积定义为:

其中:

  • 是两个向量对应位置的分量。

结果是一个标量值。


几何意义

点积也可以从几何的角度定义为:

其中:

  • 是向量 的模(长度)。
  • 之间的夹角。

通过点积可以判断:

  1. :向量夹角小于90°,方向相同。
  2. :向量正交,互相垂直。
  3. :向量夹角大于90°,方向相反。

性质

  1. 交换律

  2. 分配律

  3. 结合标量运算

    其中 k 是标量。

  4. 自身点积


应用场景

  1. 向量投影: 点积用于计算一个向量在另一个向量上的投影:

  2. 相似性计算: 在机器学习中,用点积计算向量(如文本特征向量、图像特征向量)的相似性。

  3. 能量或功的计算: 力学中,点积用于计算力和位移的乘积(功)。

  4. 线性代数与神经网络: 神经网络中的全连接层核心运算是点积,用于权重和输入的线性组合。


Python实现

1. 基础实现
python 复制代码
import numpy as np

# 定义两个向量
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

# 点积计算
dot_product = np.dot(a, b)
print(f"点积结果: {dot_product}")

运行结果

Matlab 复制代码
点积结果: 32
2. 几何应用
python 复制代码
# 计算点积和夹角
import numpy as np

a = np.array([1, 2])
b = np.array([3, 4])

# 点积
dot = np.dot(a, b)

# 向量模
norm_a = np.linalg.norm(a)
norm_b = np.linalg.norm(b)

# 夹角
cos_theta = dot / (norm_a * norm_b)
theta = np.arccos(cos_theta)

print(f"点积: {dot}")
print(f"夹角(弧度): {theta}")
print(f"夹角(度数): {np.degrees(theta)}")

运行结果

Matlab 复制代码
点积: 11
夹角(弧度): 0.17985349979247847
夹角(度数): 10.304846468766044

总结

点积是一种简单而强大的运算,广泛应用于几何、物理和数据科学中。它不仅能描述向量间的相似性,还可以延伸到矩阵运算及其在机器学习中的核心应用。理解点积的几何意义和性质有助于解决复杂的实际问题。

相关推荐
拓端研究室30 分钟前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI34 分钟前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日200639 分钟前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3932 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
巴伦是只猫2 小时前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
子燕若水6 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室7 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿7 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫7 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手7 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配