00_basic_gemm

说明

这里研究的cutlass版本是3.5

gemm讲解

c 复制代码
  using CutlassGemm = cutlass::gemm::device::Gemm<float,        // Data-type of A matrix
                                                  ColumnMajor,  // Layout of A matrix
                                                  float,        // Data-type of B matrix
                                                  ColumnMajor,  // Layout of B matrix
                                                  float,        // Data-type of C matrix
                                                  ColumnMajor>; // Layout of C matrix

  CutlassGemm gemm_operator;
  CutlassGemm::Arguments args({M , N, K},  // Gemm Problem dimensions
                              {A, lda},    // Tensor-ref for source matrix A
                              {B, ldb},    // Tensor-ref for source matrix B
                              {C, ldc},    // Tensor-ref for source matrix C
                              {C, ldc},    // Tensor-ref for destination matrix D (may be different memory than source C matrix)
                              {alpha, beta}); // Scalars used in the Epilogue
  
  cutlass::Status status = gemm_operator(args);

上面是核心代码,可以看到首先要实例化一个类型CutlassGemm(编译期就要定下来),然后根据这个类型实例化一个对象gemm_operator(运行期),然后对象调用operator(args)做计算(运行期)。

编译期

c 复制代码
  using CutlassGemm = cutlass::gemm::device::Gemm<float,        // Data-type of A matrix
                                                ColumnMajor,  // Layout of A matrix
                                                float,        // Data-type of B matrix
                                                ColumnMajor,  // Layout of B matrix
                                                float,        // Data-type of C matrix
                                                ColumnMajor>; // Layout of C matrix

可以看到,编译期时候,程序员必须要定下输入矩阵的layout和数据类型。事实上真的是这样吗?我们来深究一下这个cutlass::gemm::device::Gemm,从这个名字就可以看出来,cutlass实现了一个gemm,有device, threadblock, warp, thread几个级别gemm,这个sample里面用的是device级别, 所谓的device级别就是在cpu端的代码可以调用的,这个其实和cub中的逻辑是一样的。

Gemm类

c 复制代码
template <
    typename ElementA_,
    typename LayoutA_,
    typename OperatorClass_ = arch::OpClassSimt,
    typename ArchTag_ = arch::Sm70,
    typename ThreadblockShape_ = typename DefaultGemmConfiguration<
        OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
        ElementAccumulator_>::ThreadblockShape,
    //省略
> 
Gemm{}
//偏特化一个
template<省略>
Gemm<layoutC=layout::ColumnMajor,>
  1. 这里偏特化很奇怪,单独给layoutC为列优先时候准备了一个类,具体什么原因也不深究,因为测试例子给的就是个ColumnMajor的layoutC,所以我们直接看这个偏特化类型。

这里增加了一个小知识,就是偏特化的模板不需要再传入默认值,会自动复用原始模板的默认值,此外由于偏特化实例化了一个值,导致在类里使用的时候没有了形参,为此可以看到源码里在类的开头搞了一堆的 类似using LayoutC = LayoutC_;即使偏特化实例化后,也能在类中再搞一个形参使用,CPP这搞得的是真恶心。

相关推荐
17´17 分钟前
从0到机器视觉工程师(五):C++设计模式
开发语言·c++·设计模式
小鹏编程21 分钟前
C++和Python中负数取余结果的区别
c++·python
鲁班相信爱情32 分钟前
Qt: 无法运行rc.exe
c++·qt
重生之我是数学王子37 分钟前
使用Qt实现json数据的格式检测并序列化输出 Qt5.4.0环境
c++·qt·json
Ritsu栗子41 分钟前
代码随想录算法训练营day23
c++·算法
~糖炒栗子~41 分钟前
[Day 12]904.水果成篮
数据结构·c++·算法·leetcode
Adunn42 分钟前
算法基础 - 二分查找
数据结构·c++·算法
ALISHENGYA44 分钟前
全国青少年信息学奥林匹克竞赛(信奥赛)备考实战之循环结构(while循环应用)
开发语言·数据结构·c++·算法
猫武士水星1 小时前
标题统计C++
开发语言·c++
苹果1 小时前
C++二十三种设计模式之观察者模式
c++·观察者模式·设计模式