AI+智慧医审,助力商保核赔风控智能化,效率翻倍

目前商业保险的理赔流程仍然高度依赖人工处理纸质理赔材料,理赔过程中存在多个痛点难点,导致处理效率低下,且准确率不高:

  1. 材料多、信息量大,处理效率低,准确率也难以保证;
  2. 使用普通OCR技术在处理模糊、缺损的单据或生僻字、相似字时,识别结果不全且错误率高;
  3. 对于保险公司和TPA等理赔机构,医保目录难获取,更新不及时,缺少甲乙丙类、自付比例等重要信息;
  4. 在理赔审核阶段,项目明细数量庞大,审核难度高,需要逐项核实不合理的报销项目以防止医保欺诈。同时,需要对照当地医保政策,核对报销类别、比例等标准,这进一步增加了审核的工作量。

为了解决保险理赔中的各种难题,我司以医疗行业版大模型和大规模医疗知识图谱为底层技术支撑,结合先进的数据分析和机器学习算法,通过智能录入、规则配置、智能AI审核等步骤,打造了具有医学知识和保险理赔经验的AI+智慧医审系统。

该系统满足从收单-清分-录入-审核一站式业务流程:支持识别前票据影像分类、票据清晰度质量检测、票据OCR识别录入、识别后知识库匹配等,将识别结果反馈至前端业务系统,提供标准统一接口,可根据标准字段将识别结果自动填入系统,并根据反馈的置信度结果对可能存在的错误结果进行过滤,提升人工审核效率。

AI+智慧医审系统通过端到端的自动化审核流程,革新了传统的核赔操作模式。其高效、精准的审核能力,显著提升了服务处理质量和效率,大幅降低了人力成本,实现了成本效益的最大化,展现出良好的控费能力。经人工确认,系统控费率比纯人工审核控费率提升了2%,时效性与准确性均优于传统人工审核水平。

AI+智慧医审系统面向医疗领域构建的知识图谱,包含超3000万条知识数据,覆盖全科室的疾病、症状、手术、医疗服务项、医用耗材、医疗机构和用药等信息。依托该知识图谱,快瞳医疗单证OCR可以对识别结果进行深度优化,对医疗票据模糊、缺损以及OCR识别错误内容,通过匹配医疗知识库,实现智能推理矫正、补全信息,进行统一校验和归一处理。同时,利用人工智能对知识库深度学习,实现快速自动匹配医疗知识库,自动提示识别结果中的可疑错误,减少人工审核与纠错成本。

客户案例 · 医保AI报销受理

某省级医保系统接入快瞳AI核心能力,实现对零星报销单据的电子化管理、快速结构化录入,并进行票据合规审核、医保目录AI匹配、费用合理性审核,显著改善医保报销流程,完善审核风控机制,提效降本。

相关推荐
Yan-英杰1 分钟前
BoostKit OmniAdaptor 源码深度解析
网络·人工智能·网络协议·tcp/ip·http
用泥种荷花14 分钟前
【LangChain学习笔记】Message
人工智能
阿里云大数据AI技术18 分钟前
一套底座支撑多场景:高德地图基于 Paimon + StarRocks 轨迹服务实践
人工智能
云擎算力平台omniyq.com19 分钟前
CES 2026观察:从“物理AI”愿景看行业算力基础设施演进
人工智能
想用offer打牌29 分钟前
一站式了解Spring AI Alibaba的流式输出
java·人工智能·后端
黑符石37 分钟前
【论文研读】Madgwick 姿态滤波算法报告总结
人工智能·算法·机器学习·imu·惯性动捕·madgwick·姿态滤波
JQLvopkk44 分钟前
智能AI“学习功能”在程序开发部分的逻辑
人工智能·机器学习·计算机视觉
我的offer在哪里1 小时前
Hugging Face:让大模型触手可及的魔法工厂
人工智能·python·语言模型·开源·ai编程
收获不止数据库1 小时前
黄仁勋2026CES演讲复盘:旧世界,裂开了!
大数据·数据库·人工智能·职场和发展