Masked_Filled随机置列为零

文章目录

  • [1. softmax](#1. softmax)
  • [2. python 方法](#2. python 方法)

1. softmax

在计算损失函数的时候,我们需要将我们填充为0的地方概率置为0,以免参与损失计算,我们一般会将需要置为0的位置上面通过masked_filled函数将为True的位置置为一个非常小的值1e-9,这样经过F.softmax函数后,其值为0。这里用到两个函数,

  • 第一个是F.softmax,主要负责归一化处理,将值转换为0-1内,并且其和为1,转换成概率值。
  • 第二个是Masked_fill 函数,可以通过提供一个同等大小的BOOL矩阵,将为True的地方,填充为自己喜欢的值。
  • 第三个是填充的方式,在transformer中,我们把为0的位置的值填充为负无穷,这样经过为softmax后为零,但是transofrmer中填充的方式为在一个行向量中的末尾填充零,以行向量作为样本向量,列向量为特征向量,根据MIT麻神理工的思路,矩阵A以列向量表示更适合参数学习,所以我们希望通过随机掩码不同位置的列向量,这样通过学习样本的特征维来表示矩阵,所以我们引入一种列向量掩码方式。

2. python 方法

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

torch.set_printoptions(precision=3, sci_mode=False)
torch.manual_seed(333512)

if __name__ == "__main__":
    run_code = 0
    row = 4
    column = 5
    scores = torch.randn(row, column)
    masked = torch.randint(0, 2, (1, column)).to(torch.bool)
    masked_scores = scores.masked_fill(masked, -1e9)
    scores_softmax = F.softmax(masked_scores, dim=-1)
    print(f"scores=\n{scores}")
    print(f"masked=\n{masked}")
    print(f"masked_scores=\n{masked_scores}")
    print(f"scores_softmax=\n{scores_softmax}")
  • 结果:
python 复制代码
scores=
tensor([[-0.786,  1.136,  1.624,  0.417,  1.366],
        [-0.520, -0.127, -0.219, -0.489,  0.276],
        [-0.937, -0.734,  1.221, -0.305,  1.020],
        [ 2.252, -0.042, -1.098,  1.135, -0.075]])
masked=
tensor([[False,  True,  True, False,  True]])
masked_scores=
tensor([[    -0.786, -1000000000.000, -1000000000.000,      0.417, -1000000000.000],
        [    -0.520, -1000000000.000, -1000000000.000,     -0.489, -1000000000.000],
        [    -0.937, -1000000000.000, -1000000000.000,     -0.305, -1000000000.000],
        [     2.252, -1000000000.000, -1000000000.000,      1.135, -1000000000.000]])
scores_softmax=
tensor([[0.231, 0.000, 0.000, 0.769, 0.000],
        [0.492, 0.000, 0.000, 0.508, 0.000],
        [0.347, 0.000, 0.000, 0.653, 0.000],
        [0.754, 0.000, 0.000, 0.246, 0.000]])
相关推荐
快降重科研小助手3 分钟前
文科论述深度改写|挑战哲学论述文,“快降重”如何应对思辨文本?
人工智能·经验分享·aigc·ai写作·降重·降ai率
wan9zhixin5 分钟前
2026年1月变电设备六氟化硫泄漏检测仪品牌推荐
大数据·网络·人工智能
bst@微胖子10 分钟前
LlamaIndex之Workflow工作流案例
人工智能·机器学习
栗少33 分钟前
雅思口语高分进阶:从“中式表达”到“母语者逻辑”的深度重构
人工智能
落雨盛夏40 分钟前
深度学习|李哥考研2
人工智能·深度学习
美狐美颜sdk41 分钟前
人脸美型美颜SDK在直播平台中的实现方式与开发策略
人工智能·音视频·美颜sdk·视频美颜sdk·美狐美颜sdk
zpedu1 小时前
软考想一次过,有一个学习衡量标准吗?
人工智能·笔记
人工智能AI技术1 小时前
【Agent从入门到实践】25 主流向量数据库速览:Pinecone、Chroma、Milvus,本地/云端选型建议
人工智能·python
liliangcsdn1 小时前
VS Code开源LLM编程插件的调研
人工智能
xiaoli23271 小时前
DBConformer论文精读
深度学习