stable diffusion 量化学习笔记

文章目录

一、一些tensorRT背景及使用介绍

1)深度学习介绍

  • 简单学习介绍量化背景

    补充

    1)tensorFlow python版本其实是调用的TensorFlow C的接口
    2)libtorch其实是pytorch的C++版本
    3)cublas是实现矩阵相乘的功能
    4)cudnn主要实现dnn上的一些算子功能,例如卷积等
    5)不同NVIDIA显卡架构间不兼容,同代显卡基本是同架构

2)TensorRT优化策略介绍

  • 优化策略

    1、低精度优化 :int8 int16
    2、Kernel自动调优
    例如:cublas gemm多种实现:①不用shared memory ;②小矩阵相乘;③使用额外显存的策略
    3、算子融合:例如:
    relu+bias+1x1 conv =1x1 CBR
    4、多流运行
    5、显存优化

3)TensorRT基础使用流程

  • 代码使用流程

4)dynamic shape 模式

  • 背景
    ①TensorRT 6.0之后 explicit(显式)batch支持动态batchsize
    ②CV的图片基本都是固定大小,而NLP和speech语音很多都是不固定大小的
  • 思路
    1)build engine阶段设置:
    ①用createNetworkV2设置显示batchsize
    ②设置最大batchsize
    ③设置优化profile选项,选择最大、最常用、最小的数据维度(类似,15s\20s\30s的语音)

    2)infer推理阶段
    ①每次推理设置输出的数据维度
    ②检查输入的数据维度是否符合需求
    ③开启推理

5)TensorRT模型转换

①onnx:一键解析pytorch转为onnx,不用像API那样一层一层构建onnx

②torch2trt:pytorch直接转为trt

③TensorFlow:谷歌出品,不用pytorch,tf直接转为trt(tf2tensorrt)

④Tencent Forward:支持pytorch\onnx\tf直接转为trt,接口简单

二、实操

1)编译tensorRT开源代码运行SampleMNIST

相关推荐
臭东西的学习笔记8 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
夜流冰8 小时前
Motor - 电机扭矩和电机大小的关系
笔记
AI视觉网奇9 小时前
LiveTalking 部署笔记
笔记
倘若猫爱上鱼9 小时前
关于系统能检测到固态可移动硬盘(或U盘),系统资源管理器却始终无法扫描到固态可移动硬盘(或U盘)的解决办法
笔记
ghgxm5209 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
求真求知的糖葫芦9 小时前
巴伦学习(一)一种新型补偿传输线巴伦论文学习笔记(自用)
笔记·学习·射频工程
沉默-_-9 小时前
力扣hot100滑动窗口(C++)
数据结构·c++·学习·算法·滑动窗口
freepopo10 小时前
书房设计|3㎡书桌角,治愈学习时光 [特殊字符]
学习
鑫—萍10 小时前
嵌入式开发学习——STM32单片机入门教程
c语言·驱动开发·stm32·单片机·嵌入式硬件·学习·硬件工程
S火星人S10 小时前
LVGL[display]
单片机·学习