stable diffusion 量化学习笔记

文章目录

一、一些tensorRT背景及使用介绍

1)深度学习介绍

  • 简单学习介绍量化背景

    补充

    1)tensorFlow python版本其实是调用的TensorFlow C的接口
    2)libtorch其实是pytorch的C++版本
    3)cublas是实现矩阵相乘的功能
    4)cudnn主要实现dnn上的一些算子功能,例如卷积等
    5)不同NVIDIA显卡架构间不兼容,同代显卡基本是同架构

2)TensorRT优化策略介绍

  • 优化策略

    1、低精度优化 :int8 int16
    2、Kernel自动调优
    例如:cublas gemm多种实现:①不用shared memory ;②小矩阵相乘;③使用额外显存的策略
    3、算子融合:例如:
    relu+bias+1x1 conv =1x1 CBR
    4、多流运行
    5、显存优化

3)TensorRT基础使用流程

  • 代码使用流程

4)dynamic shape 模式

  • 背景
    ①TensorRT 6.0之后 explicit(显式)batch支持动态batchsize
    ②CV的图片基本都是固定大小,而NLP和speech语音很多都是不固定大小的
  • 思路
    1)build engine阶段设置:
    ①用createNetworkV2设置显示batchsize
    ②设置最大batchsize
    ③设置优化profile选项,选择最大、最常用、最小的数据维度(类似,15s\20s\30s的语音)

    2)infer推理阶段
    ①每次推理设置输出的数据维度
    ②检查输入的数据维度是否符合需求
    ③开启推理

5)TensorRT模型转换

①onnx:一键解析pytorch转为onnx,不用像API那样一层一层构建onnx

②torch2trt:pytorch直接转为trt

③TensorFlow:谷歌出品,不用pytorch,tf直接转为trt(tf2tensorrt)

④Tencent Forward:支持pytorch\onnx\tf直接转为trt,接口简单

二、实操

1)编译tensorRT开源代码运行SampleMNIST

相关推荐
不会代码的小猴4 小时前
C++的第九天笔记
开发语言·c++·笔记
专注于大数据技术栈5 小时前
java学习--枚举(Enum)
java·学习
我命由我123455 小时前
开发中的英语积累 P19:Inspect、Hint、Feedback、Direction、Compact、Vulnerability
经验分享·笔记·学习·职场和发展·求职招聘·职场发展·学习方法
老王熬夜敲代码7 小时前
C++中的thread
c++·笔记·面试
qq_12498707537 小时前
基于SpringBoot学生学习历史的选课推荐系统的设计与实现(源码+论文+部署+安装)
java·spring boot·后端·学习·毕业设计·毕设
崇山峻岭之间7 小时前
C++ Prime Plus 学习笔记033
c++·笔记·学习
暗然而日章8 小时前
C++基础:Stanford CS106L学习笔记 7 类
c++·笔记·学习
思成不止于此8 小时前
【MySQL 零基础入门】DDL 核心语法全解析:数据库与表结构操作篇
数据库·笔记·学习·mysql
学编程的闹钟8 小时前
86【CSS的模块化处理】
学习
lkbhua莱克瓦248 小时前
Java进阶——IO流
java·开发语言·笔记·学习方法·io流