stable diffusion 量化学习笔记

文章目录

一、一些tensorRT背景及使用介绍

1)深度学习介绍

  • 简单学习介绍量化背景

    补充

    1)tensorFlow python版本其实是调用的TensorFlow C的接口
    2)libtorch其实是pytorch的C++版本
    3)cublas是实现矩阵相乘的功能
    4)cudnn主要实现dnn上的一些算子功能,例如卷积等
    5)不同NVIDIA显卡架构间不兼容,同代显卡基本是同架构

2)TensorRT优化策略介绍

  • 优化策略

    1、低精度优化 :int8 int16
    2、Kernel自动调优
    例如:cublas gemm多种实现:①不用shared memory ;②小矩阵相乘;③使用额外显存的策略
    3、算子融合:例如:
    relu+bias+1x1 conv =1x1 CBR
    4、多流运行
    5、显存优化

3)TensorRT基础使用流程

  • 代码使用流程

4)dynamic shape 模式

  • 背景
    ①TensorRT 6.0之后 explicit(显式)batch支持动态batchsize
    ②CV的图片基本都是固定大小,而NLP和speech语音很多都是不固定大小的
  • 思路
    1)build engine阶段设置:
    ①用createNetworkV2设置显示batchsize
    ②设置最大batchsize
    ③设置优化profile选项,选择最大、最常用、最小的数据维度(类似,15s\20s\30s的语音)

    2)infer推理阶段
    ①每次推理设置输出的数据维度
    ②检查输入的数据维度是否符合需求
    ③开启推理

5)TensorRT模型转换

①onnx:一键解析pytorch转为onnx,不用像API那样一层一层构建onnx

②torch2trt:pytorch直接转为trt

③TensorFlow:谷歌出品,不用pytorch,tf直接转为trt(tf2tensorrt)

④Tencent Forward:支持pytorch\onnx\tf直接转为trt,接口简单

二、实操

1)编译tensorRT开源代码运行SampleMNIST

相关推荐
石像鬼₧魂石5 小时前
如何配置Fail2Ban的Jail?
linux·学习·ubuntu
hetao17338376 小时前
2025-12-12~14 hetao1733837的刷题笔记
数据结构·c++·笔记·算法
Nan_Shu_6148 小时前
学习:VueUse (1)
学习
Li.CQ8 小时前
SQL学习笔记(二)
笔记·sql·学习
Huangxy__8 小时前
指针的补充学习
学习
Smartdaili China9 小时前
掌握Java网页抓取:技术与示例完整指南
java·网络·学习·指南·网页·住宅ip·爬虫api
自不量力的A同学9 小时前
OpenNJet v3.3.1.3
笔记
charlie11451419110 小时前
如何快速在 VS2026 上使用 C++ 模块 — 完整上手指南
开发语言·c++·笔记·学习·现代c++
可信计算11 小时前
【算法随想】一种基于“视觉表征图”拓扑变化的NLP序列预测新范式
人工智能·笔记·python·算法·自然语言处理