stable diffusion 量化学习笔记

文章目录

一、一些tensorRT背景及使用介绍

1)深度学习介绍

  • 简单学习介绍量化背景

    补充

    1)tensorFlow python版本其实是调用的TensorFlow C的接口
    2)libtorch其实是pytorch的C++版本
    3)cublas是实现矩阵相乘的功能
    4)cudnn主要实现dnn上的一些算子功能,例如卷积等
    5)不同NVIDIA显卡架构间不兼容,同代显卡基本是同架构

2)TensorRT优化策略介绍

  • 优化策略

    1、低精度优化 :int8 int16
    2、Kernel自动调优
    例如:cublas gemm多种实现:①不用shared memory ;②小矩阵相乘;③使用额外显存的策略
    3、算子融合:例如:
    relu+bias+1x1 conv =1x1 CBR
    4、多流运行
    5、显存优化

3)TensorRT基础使用流程

  • 代码使用流程

4)dynamic shape 模式

  • 背景
    ①TensorRT 6.0之后 explicit(显式)batch支持动态batchsize
    ②CV的图片基本都是固定大小,而NLP和speech语音很多都是不固定大小的
  • 思路
    1)build engine阶段设置:
    ①用createNetworkV2设置显示batchsize
    ②设置最大batchsize
    ③设置优化profile选项,选择最大、最常用、最小的数据维度(类似,15s\20s\30s的语音)

    2)infer推理阶段
    ①每次推理设置输出的数据维度
    ②检查输入的数据维度是否符合需求
    ③开启推理

5)TensorRT模型转换

①onnx:一键解析pytorch转为onnx,不用像API那样一层一层构建onnx

②torch2trt:pytorch直接转为trt

③TensorFlow:谷歌出品,不用pytorch,tf直接转为trt(tf2tensorrt)

④Tencent Forward:支持pytorch\onnx\tf直接转为trt,接口简单

二、实操

1)编译tensorRT开源代码运行SampleMNIST

相关推荐
执笔论英雄10 小时前
【大模型学习cuda】入们第一个例子-向量和
学习
wdfk_prog10 小时前
[Linux]学习笔记系列 -- [drivers][input]input
linux·笔记·学习
ouliten10 小时前
cuda编程笔记(36)-- 应用Tensor Core加速矩阵乘法
笔记·cuda
孞㐑¥11 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法
Gary Studio12 小时前
rk芯片驱动编写
linux·学习
mango_mangojuice12 小时前
Linux学习笔记(make/Makefile)1.23
java·linux·前端·笔记·学习
工程师老罗13 小时前
YOLOv1 核心知识点笔记
笔记·yolo
lingggggaaaa13 小时前
安全工具篇&动态绕过&DumpLsass凭据&Certutil下载&变异替换&打乱源头特征
学习·安全·web安全·免杀对抗
PP东13 小时前
Flowable学习(二)——Flowable概念学习
java·后端·学习·flowable
学电子她就能回来吗13 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github