stable diffusion 量化学习笔记

文章目录

一、一些tensorRT背景及使用介绍

1)深度学习介绍

  • 简单学习介绍量化背景

    补充

    1)tensorFlow python版本其实是调用的TensorFlow C的接口
    2)libtorch其实是pytorch的C++版本
    3)cublas是实现矩阵相乘的功能
    4)cudnn主要实现dnn上的一些算子功能,例如卷积等
    5)不同NVIDIA显卡架构间不兼容,同代显卡基本是同架构

2)TensorRT优化策略介绍

  • 优化策略

    1、低精度优化 :int8 int16
    2、Kernel自动调优
    例如:cublas gemm多种实现:①不用shared memory ;②小矩阵相乘;③使用额外显存的策略
    3、算子融合:例如:
    relu+bias+1x1 conv =1x1 CBR
    4、多流运行
    5、显存优化

3)TensorRT基础使用流程

  • 代码使用流程

4)dynamic shape 模式

  • 背景
    ①TensorRT 6.0之后 explicit(显式)batch支持动态batchsize
    ②CV的图片基本都是固定大小,而NLP和speech语音很多都是不固定大小的
  • 思路
    1)build engine阶段设置:
    ①用createNetworkV2设置显示batchsize
    ②设置最大batchsize
    ③设置优化profile选项,选择最大、最常用、最小的数据维度(类似,15s\20s\30s的语音)

    2)infer推理阶段
    ①每次推理设置输出的数据维度
    ②检查输入的数据维度是否符合需求
    ③开启推理

5)TensorRT模型转换

①onnx:一键解析pytorch转为onnx,不用像API那样一层一层构建onnx

②torch2trt:pytorch直接转为trt

③TensorFlow:谷歌出品,不用pytorch,tf直接转为trt(tf2tensorrt)

④Tencent Forward:支持pytorch\onnx\tf直接转为trt,接口简单

二、实操

1)编译tensorRT开源代码运行SampleMNIST

相关推荐
A9better12 分钟前
嵌入式开发学习日志50——任务调度与状态
stm32·嵌入式硬件·学习
四维碎片39 分钟前
QSettings + INI 笔记
笔记·qt·算法
非凡ghost40 分钟前
ESET NupDown Tools 数据库下载工具
学习·软件需求
zzcufo1 小时前
多邻国第5阶段17-18学习笔记
笔记·学习
BlackWolfSky2 小时前
鸿蒙中级课程笔记4—应用程序框架进阶1—Stage模型应用组成结构、UIAbility启动模式、启动应用内UIAbility
笔记·华为·harmonyos
中屹指纹浏览器2 小时前
指纹浏览器性能优化实操——多实例并发与资源占用管控
经验分享·笔记
brave and determined2 小时前
工程设计类学习(DAY9):印刷电路板(PCB)材料选择、工艺特性与制造技术综合详解
学习·制造·pcb·smt·工程设计·fr-4·pcb钻孔
了一梨3 小时前
SQLite3学习笔记5:INSERT(写)+ SELECT(读)数据(C API)
笔记·学习·sqlite
-To be number.wan3 小时前
算法学习日记 | 枚举
c++·学习·算法
jrlong3 小时前
DataWhale大模型基础与量化微调task5学习笔记(第 3 章:大模型训练与量化_模型量化实战)
笔记·学习