『玩转Streamlit』--查看K线的小工具

在金融市场分析中,查看不同交易对的 K 线数据是一项基础且重要的工作。

今天,我们就来学习如何使用 Streamlit 构建一个简单的 K 线查看小工具,让你能够方便地查看不同交易对在不同时间范围内的 K 线数据。

1. 环境准备

首先,确保已经安装了必要的库。

除了 Streamlit 用于构建界面,还需要pandas 用于数据处理,plotly 用于绘制 K 线图。

我们假设已经有Streamlit环境,只要安装:

python 复制代码
pip install pandas plotly

2. 数据获取

K线 数据我是从币安交易所(binance)获取的,其中的字段如下:

python 复制代码
self.safe_integer(ohlcv, 0),  # open time
self.safe_number(ohlcv, 1),  # open
self.safe_number(ohlcv, 2),  # high
self.safe_number(ohlcv, 3),  # low
self.safe_number(ohlcv, 4),  # close
self.safe_number(ohlcv, 5),  # volume
self.safe_integer(ohlcv, 6),  # close time
self.safe_number(ohlcv, 7),  # quote asset volume
self.safe_integer(ohlcv, 8),  # number of trades
self.safe_number(ohlcv, 9),  # taker buy base asset volume
self.safe_number(ohlcv, 10),  # taker buy quote asset volume

其中用于K线展示的主要是:open time(K线开始时间),open(开盘价),high(最高价),low(最低价),close(收盘价),volumn(成交量)几个字段。

采集数据使用币安的公开API即可,本文的重点不在这里,不详细叙述了。

通过API,采集了大约300多个永续合约的K线数据。

3. 构建streamlit界面

接下来,我们开始构建 Streamlit 界面。

界面主要包含两个部分:上半部分可以选择交易对信息和 K 线时间范围;

python 复制代码
st.header("查看Current-交易对K线")

st.selectbox("选择交易对:", key="symbol", options=options, on_change=update_symbol)
st.date_input(
    "时间范围:",
    (st.session_state.start_date, st.session_state.end_date),
    format="YYYY/MM/DD",
    key="symbol_date_range",
    on_change=update_date_range,
)

下半部分用tab页分别展示数据和K线图。

python 复制代码
def tab_data():
    if st.button("重载数据"):
        read_data(st.session_state.symbol)

    data = st.session_state.data
    if len(data) == 0:
        return

    # 更新开始结束时间
    data_start = datetime.datetime.strptime(start, "%Y-%m-%d %H:%M:%S")
    data_end = datetime.datetime.strptime(end, "%Y-%m-%d %H:%M:%S")
    if st.session_state.start_date > data_end.date():
        st.session_state.start_date = data_start.date()

    if st.session_state.end_date < data_start.date():
        st.session_state.end_date = data_end.date()

    data = filter_data(data)

    st.dataframe(data)


def tab_plotly_graph():
    if st.button("重新绘图"):
        read_data(st.session_state.symbol)

    if len(st.session_state.data) == 0:
        return

    data = filter_data(st.session_state.data)

    # 数据量太大时,使用最新的2000条来绘图
    if len(data) > 2000:
        graph = KlinePlotlyGraph(data=data.iloc[-2000:], idc_data=None)
    else:
        graph = KlinePlotlyGraph(data=data, idc_data=None)

    fig = graph.figure(title=f"{st.session_state.symbol} - K线图")

    st.plotly_chart(fig)

tab1, tab2 = st.tabs(["数据", "图形"])
with tab1:
    tab_data()

with tab2:
    tab_plotly_graph()

代码中封装的一些读取数据,显示图表的函数,比较冗长,这里没有贴出来。

本文的重点其实是通过Streamlit来构造一个简单的K线查看页面,展示Streamlit强大的前端界面功能。

4. 运行应用

最后,运行一下这个简单的应用,看看效果如何。

5. 总结

通过以上步骤,我们成功使用 Streamlit 构建了一个简单的 K 线查看小工具。

这个工具不仅可以帮助我们快速查看不同交易对的 K 线数据,还提供了直观的可视化界面。

当然,在实际应用中,你可以根据需要进一步优化和扩展这个工具,例如从实时数据源获取数据、添加更多的技术指标分析等。

相关推荐
m0_7482323924 分钟前
基于OpenCV和Python的人脸识别系统_django
python·opencv·django
dme.1 小时前
Python爬虫selenium验证-中文识别点选+图片验证码案例
爬虫·python
东方-教育技术博主1 小时前
wps中zotero插件消失,解决每次都需要重新开问题
python
镰圈量化1 小时前
当电脑上有几个python版本Vscode选择特定版本python
开发语言·vscode·python
宇努力学习2 小时前
如何本地部署seepseek
python·ai·ollama·deepseek
橙狮科技2 小时前
使用 GPTQ 进行 4 位 LLM 量化
人工智能·python·语言模型
开开心心就好2 小时前
娱乐使用,可以生成转账、图片、聊天等对话内容
windows·python·智能手机·软件工程·娱乐·软件需求
愚昧之山绝望之谷开悟之坡2 小时前
ragflow-RAPTOR到底是什么?请通俗的解释!
python
背太阳的牧羊人2 小时前
RAG检索中使用一个 长上下文重排序器(Long Context Reorder) 对检索到的文档进行进一步的处理和排序,优化输出顺序
开发语言·人工智能·python·langchain·rag
007_rbq2 小时前
XUnity.AutoTranslator-Gemini——调用Google的Gemini API, 实现Unity游戏中日文文本的自动翻译
人工智能·python·游戏·机器学习·unity·github·机器翻译