fft分析数据求bode图原理

快速傅里叶变换(FFT)原理

  • FFT是一种高效计算离散傅里叶变换(DFT)的算法。DFT的定义为X(k)=\sum_{n = 0}^{N - 1}x(n)e^{-j\frac{2\pi}{N}kn},其中x(n)是离散时间序列(输入信号),N是序列的长度,k表示频率索引,j=\sqrt{- 1}。

  • FFT通过利用DFT计算中的对称性和周期性,将DFT的计算复杂度从O(N^2)降低到O(N\log N),大大提高了计算效率。它能够将时域信号转换为频域信号,揭示信号中包含的不同频率成分及其幅度和相位信息。

  • 例如,对于一个由多个正弦波叠加而成的信号,FFT可以将其分解为各个正弦波对应的频率分量,每个频率分量的幅度表示该频率成分在原始信号中的强度,相位表示该频率成分的起始位置。

Bode图原理

  • Bode图由幅值图和相位图组成,用于描述线性时不变(LTI)系统的频率响应特性。

  • 幅值图:对于一个LTI系统,其频率响应函数H(j\omega)的幅值\vert H(j\omega)\vert表示输入信号中频率为\omega的正弦分量经过系统后,输出正弦分量幅值与输入正弦分量幅值之比。在Bode图中,幅值通常以分贝(dB)为单位,即20\log_{10}\vert H(j\omega)\vert。这样可以将乘法运算转换为加法运算,方便在对数坐标上绘制和分析。

  • 相位图:频率响应函数H(j\omega)的相位\angle H(j\omega)表示输入信号中频率为\omega的正弦分量经过系统后,输出正弦分量相对于输入正弦分量的相位延迟(或超前)。在Bode图中,相位通常以度为单位绘制。

  • Bode图的横坐标是频率\omega,通常采用对数坐标,这是因为LTI系统的频率响应在对数频率坐标下往往具有更简单的规律,例如,许多系统的幅值响应在对数频率坐标下可能呈现出直线段(如低频段的斜率为0的直线、高频段斜率为 - 20dB/decade的直线等),便于分析系统的频率特性,如系统的带宽、增益、相位裕度等。

利用FFT分析数据求Bode图的联系

  • 当我们有一个系统的输入信号x(t)和输出信号y(t)时,通过对它们进行FFT得到X(j\omega)和Y(j\omega),那么系统的频率响应函数H(j\omega)=\frac{Y(j\omega)}{X(j\omega)}。

  • 利用FFT计算得到的H(j\omega),我们可以分别计算其幅值\vert H(j\omega)\vert和相位\angle H(j\omega),然后按照Bode图的绘制要求(幅值用dB表示,频率用对数坐标,相位用度表示)绘制出Bode图,从而分析系统的频率响应特性,如系统的增益随频率的变化情况、相位延迟随频率的变化情况等。

相关推荐
arbboter4 分钟前
【AI插件开发】Notepad++ AI插件开发实践:从Dock窗口集成到功能菜单实现
人工智能·notepad++·动态菜单·notepad++插件开发·dock窗口集成·ai代码辅助工具·ai对话窗口
jndingxin12 分钟前
OpenCV 图形API(或称G-API)(1)
人工智能·opencv·计算机视觉
神马行空1 小时前
一文解读DeepSeek大模型在政府工作中具体的场景应用
人工智能·大模型·数字化转型·deepseek·政务应用
合合技术团队1 小时前
实测对比|法国 AI 独角兽公司发布的“最强 OCR”,实测效果如何?
大数据·人工智能·图像识别
蒹葭苍苍8731 小时前
LoRA、QLoRA微调与Lama Factory
人工智能·笔记
蹦蹦跳跳真可爱5891 小时前
Python----机器学习(基于PyTorch的线性回归)
人工智能·pytorch·python·机器学习·线性回归
mosquito_lover12 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
契合qht53_shine2 小时前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉
Naomi5213 小时前
Trustworthy Machine Learning
人工智能·机器学习
刘 怼怼3 小时前
使用 Vue 重构 RAGFlow 实现聊天功能
前端·vue.js·人工智能·重构