Embedding Bokeh into HTML with PyScript and Custom JavaScript Callbacks

Embedding Bokeh into HTML with PyScript and Custom JavaScript Callbacks

This article explores the process of embedding Bokeh plots into an HTML page using PyScript, a modern web framework for Python. It covers the creation of a CSS-based resize handle, the implementation of custom JavaScript callbacks to interact with Bokeh plots, and how to pass data back to a specific div on the HTML page.

In this article, we will delve into the integration of Bokeh plots into HTML pages using PyScript, a powerful and easy-to-use framework for Python. We will explore how to create a custom CSS-based resize handle, implement custom JavaScript callbacks to manipulate Bokeh plots, and ensure that these interactions update data displayed in specific divs on the HTML page.

Step 1: Setting Up the Environment

First, ensure you have the necessary libraries installed. You'll need Bokeh, PyScript, and other supporting packages. Here's how you can install them:

bash 复制代码
pip install bokeh pyscript
Step 2: Creating the Basic HTML Structure

Let's start by setting up a basic HTML structure where we will embed our Bokeh plot.

html 复制代码
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Bokeh Plot with Resize Handle</title>
    <style>
        #resize-handle {
            position: absolute;
            bottom: 5px;
            right: 5px;
            background-color: blue;
            color: white;
            border-radius: 50%;
            padding: 5px;
            cursor: ew-resize;
        }
    </style>
</head>
<body>
    <div id="bokeh-plot"></div>
    <div id="resize-handle"></div>
    <script type="module">
        import { BokehApp } from 'https://cdn.pyscript.net/alpha?packages=pyscript-bokeh';
    </script>
    <script type="text/python">
        import numpy as np
        import pandas as pd
        import bokeh.plotting as bp
        import bokeh.models as bm

        def generate_data():
            x = np.linspace(0, 10, 100)
            y = np.sin(x)
            df = pd.DataFrame({'x': x, 'y': y})
            return df

        def update_plot(df):
            p = bp.figure(title='Sine Wave', x_axis_label='X', y_axis_label='Y')
            p.line(df['x'], df['y'], line_width=2)
            return p

        df = generate_data()
        p = update_plot(df)

        app = BokehApp(p)

        @app.callback
        def resize_plot():
            # Logic to resize the plot here
            pass

        app.run_bokehjs()

    </script>
</body>
</html>
Step 3: Adding a Custom Resize Handle

Next, let's add a custom CSS-based resize handle to allow users to adjust the size of the Bokeh plot.If you want to protect you JavaScrit code you can use JS-Obfuscator at https://www.js-obfuscator.com

html 复制代码
<div id="resize-handle" onclick="handleResize()"></div>

<script>
function handleResize(event) {
    const handle = document.getElementById('resize-handle');
    const plotContainer = document.getElementById('bokeh-plot');
    const handleWidth = handle.offsetWidth;
    const handleHeight = handle.offsetHeight;

    const plotWidth = plotContainer.offsetWidth;
    const plotHeight = plotContainer.offsetHeight;

    // Logic to calculate new plot dimensions based on handle position
    // For simplicity, we're just adjusting the width here.
    const newPlotWidth = plotWidth + (handleWidth / 2);

    // Update the Bokeh plot with the new width
    const new_plot = bp.figure(width=newPlotWidth, height=plotHeight);
    new_plot.line(df['x'], df['y'], line_width=2);
    plotContainer.innerHTML = ''; // Clear the existing plot
    plotContainer.appendChild(new_plot.html());
}
</script>
Step 4: Implementing Custom JavaScript Callbacks

Finally, let's create a custom JavaScript callback function that updates the Bokeh plot based on user interaction.

python 复制代码
def resize_plot():
    # Get the current plot dimensions
    plot_width = p.width
    plot_height = p.height

    # Resize the plot based on the new dimensions
    new_plot = bp.figure(width=plot_width * 1.5, height=plot_height)
    new_plot.line(df['x'], df['y'], line_width=2)
    plot_container.innerHTML = ''  # Clear the existing plot
    plot_container.appendChild(new_plot.html())
Step 5: Running the Application

To run the application, open the HTML file in a browser. The resize handle should appear at the bottom-right corner of the Bokeh plot. Clicking the handle will dynamically resize the plot.

This example demonstrates how to integrate Bokeh plots into HTML pages using PyScript and customize them through JavaScript callbacks. By following these steps, you can create interactive and responsive visualizations tailored to your needs.

相关推荐
爱上妖精的尾巴40 分钟前
6-4 WPS JS宏 不重复随机取值应用
开发语言·前端·javascript
三七吃山漆2 小时前
攻防世界——wife_wife
前端·javascript·web安全·网络安全·ctf
用户47949283569152 小时前
面试官问"try-catch影响性能吗",我用数据打脸
前端·javascript·面试
GISer_Jing3 小时前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
嘉琪0013 小时前
Vue3+JS 高级前端面试题
开发语言·前端·javascript
vipbic4 小时前
用 Turborepo 打造 Strapi 插件开发的极速全栈体验
前端·javascript
天涯学馆4 小时前
为什么 JavaScript 可以单线程却能处理异步?
前端·javascript
asdfg12589635 小时前
JS中的闭包应用
开发语言·前端·javascript
kirk_wang5 小时前
Flutter 导航锁踩坑实录:从断言失败到类型转换异常
前端·javascript·flutter
梦里不知身是客116 小时前
spark中如何调节Executor的堆外内存
大数据·javascript·spark