PySpark用sort-merge join解决数据倾斜的完整案例

假设有两个大表 table1 和 table2 ,并通过 sort-merge join 来解决可能的数据倾斜问题。

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import col

# 初始化SparkSession
spark = SparkSession.builder.appName("SortMergeJoinExample").getOrCreate()

# 加载数据,假设数据来自parquet文件
table1 = spark.read.parquet("path/to/table1.parquet")
table2 = spark.read.parquet("path/to/table2.parquet")

# 查看表的大小
print("table1 size: ", table1.count())
print("table2 size: ", table2.count())

# 为了演示数据倾斜,假设我们直接使用join,这里用inner join举例
joined = table1.join(table2, table1["id"] == table2["id"], "inner")

# 先对连接键进行排序,为sort-merge join做准备

sorted_table1 = table1.sortWithinPartitions("id")
sorted_table2 = table2.sortWithinPartitions("id")

# 使用sort-merge join进行连接
joined = sorted_table1.join(sorted_table2, sorted_table1["id"] == sorted_table2["id"], "inner")

# 触发Action,查看执行计划,此时可以去Spark WebUI查看任务执行情况
joined.count()

# 停止SparkSession
spark.stop()

代码解释

初始化SparkSession:创建一个SparkSession对象,这是与Spark交互的入口。

python 复制代码
spark = SparkSession.builder.appName("SortMergeJoinExample").getOrCreate()

加载数据并查看表大小:从Parquet文件加载两张表,并打印出它们的行数,以此来了解表的规模。

python 复制代码
table1 = spark.read.parquet("path/to/table1.parquet")
table2 = spark.read.parquet("path/to/table2.parquet")

print("table1 size: ", table1.count())
print("table2 size: ", table2.count())

数据预处理:在进行 sort-merge join 之前,对两个表按照连接键 id 在每个分区内进行排序。

python 复制代码
sorted_table1 = table1.sortWithinPartitions("id")
sorted_table2 = table2.sortWithinPartitions("id")

执行sort-merge join:利用排序后的表,执行 sort-merge join 操作,这里选择的是内连接。

python 复制代码
joined = sorted_table1.join(sorted_table2, sorted_table1["id"] == sorted_table2["id"], "inner")

触发Action并查看执行情况:调用 count() 方法触发一个Action,此时Spark会真正执行整个计算流程。与此同时,可以打开Spark WebUI(通常是 http://your-spark-master:4040 ),在 Stages 页面查看任务执行计划,尤其是查看各个阶段的数据分布情况,确认数据倾斜是否得到解决。

python 复制代码
joined.count()

停止SparkSession:任务完成后,关闭SparkSession释放资源。

python 复制代码
spark.stop()

要在Spark WebUI中查看数据倾斜:

  • 在执行 joined.count() 后,迅速打开浏览器访问Spark WebUI。进入 Stages 标签页,找到正在执行的 join 相关阶段。查看每个任务的处理数据量,如果之前存在数据倾斜,经过 sort-merge join 处理后,各个任务处理的数据量应该相对均匀。
相关推荐
武汉唯众智创40 分钟前
产教融合背景下,高职大数据技术专业“课证融通”课程解决方案
大数据·课证赛创·课证融通·大数据专业·大数据技术专业·高职大数据技术专业
木子杳衫42 分钟前
【软件开发】管理类系统
python·web开发
小小王app小程序开发3 小时前
任务悬赏小程序深度细分分析:非技术视角下的运营逻辑拆解
大数据·小程序
程序员小远4 小时前
银行测试:第三方支付平台业务流,功能/性能/安全测试方法
自动化测试·软件测试·python·功能测试·测试工具·性能测试·安全性测试
猫头虎6 小时前
如何查看局域网内IP冲突问题?如何查看局域网IP环绕问题?arp -a命令如何使用?
网络·python·网络协议·tcp/ip·开源·pandas·pip
沿着路走到底6 小时前
python 基础
开发语言·python
非极限码农7 小时前
Neo4j图数据库上手指南
大数据·数据库·数据分析·neo4j
烛阴8 小时前
武装你的Python“工具箱”:盘点10个你必须熟练掌握的核心方法
前端·python
莫叫石榴姐8 小时前
SQL百题斩:从入门到精通,一站式解锁数据世界
大数据·数据仓库·sql·面试·职场和发展
Hello.Reader8 小时前
Flink 状态后端(State Backends)实战原理、选型、配置与调优
大数据·flink