PySpark用sort-merge join解决数据倾斜的完整案例

假设有两个大表 table1 和 table2 ,并通过 sort-merge join 来解决可能的数据倾斜问题。

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import col

# 初始化SparkSession
spark = SparkSession.builder.appName("SortMergeJoinExample").getOrCreate()

# 加载数据,假设数据来自parquet文件
table1 = spark.read.parquet("path/to/table1.parquet")
table2 = spark.read.parquet("path/to/table2.parquet")

# 查看表的大小
print("table1 size: ", table1.count())
print("table2 size: ", table2.count())

# 为了演示数据倾斜,假设我们直接使用join,这里用inner join举例
joined = table1.join(table2, table1["id"] == table2["id"], "inner")

# 先对连接键进行排序,为sort-merge join做准备

sorted_table1 = table1.sortWithinPartitions("id")
sorted_table2 = table2.sortWithinPartitions("id")

# 使用sort-merge join进行连接
joined = sorted_table1.join(sorted_table2, sorted_table1["id"] == sorted_table2["id"], "inner")

# 触发Action,查看执行计划,此时可以去Spark WebUI查看任务执行情况
joined.count()

# 停止SparkSession
spark.stop()

代码解释

初始化SparkSession:创建一个SparkSession对象,这是与Spark交互的入口。

python 复制代码
spark = SparkSession.builder.appName("SortMergeJoinExample").getOrCreate()

加载数据并查看表大小:从Parquet文件加载两张表,并打印出它们的行数,以此来了解表的规模。

python 复制代码
table1 = spark.read.parquet("path/to/table1.parquet")
table2 = spark.read.parquet("path/to/table2.parquet")

print("table1 size: ", table1.count())
print("table2 size: ", table2.count())

数据预处理:在进行 sort-merge join 之前,对两个表按照连接键 id 在每个分区内进行排序。

python 复制代码
sorted_table1 = table1.sortWithinPartitions("id")
sorted_table2 = table2.sortWithinPartitions("id")

执行sort-merge join:利用排序后的表,执行 sort-merge join 操作,这里选择的是内连接。

python 复制代码
joined = sorted_table1.join(sorted_table2, sorted_table1["id"] == sorted_table2["id"], "inner")

触发Action并查看执行情况:调用 count() 方法触发一个Action,此时Spark会真正执行整个计算流程。与此同时,可以打开Spark WebUI(通常是 http://your-spark-master:4040 ),在 Stages 页面查看任务执行计划,尤其是查看各个阶段的数据分布情况,确认数据倾斜是否得到解决。

python 复制代码
joined.count()

停止SparkSession:任务完成后,关闭SparkSession释放资源。

python 复制代码
spark.stop()

要在Spark WebUI中查看数据倾斜:

  • 在执行 joined.count() 后,迅速打开浏览器访问Spark WebUI。进入 Stages 标签页,找到正在执行的 join 相关阶段。查看每个任务的处理数据量,如果之前存在数据倾斜,经过 sort-merge join 处理后,各个任务处理的数据量应该相对均匀。
相关推荐
时序数据说1 小时前
时序数据库市场前景分析
大数据·数据库·物联网·开源·时序数据库
fantasy_arch3 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
WBluuue5 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
2501_930104045 小时前
GitCode 疑难问题诊疗:全方位指南
大数据·elasticsearch·gitcode
赴3355 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩5 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
健康平安的活着5 小时前
es7.17.x es服务yellow状态的排查&查看节点,分片状态数量
大数据·elasticsearch·搜索引擎
RPA+AI十二工作室5 小时前
亚马逊店铺绩效巡检_影刀RPA源码解读
chrome·python·rpa·影刀
念念01075 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
小艳加油6 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer