PySpark用sort-merge join解决数据倾斜的完整案例

假设有两个大表 table1 和 table2 ,并通过 sort-merge join 来解决可能的数据倾斜问题。

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import col

# 初始化SparkSession
spark = SparkSession.builder.appName("SortMergeJoinExample").getOrCreate()

# 加载数据,假设数据来自parquet文件
table1 = spark.read.parquet("path/to/table1.parquet")
table2 = spark.read.parquet("path/to/table2.parquet")

# 查看表的大小
print("table1 size: ", table1.count())
print("table2 size: ", table2.count())

# 为了演示数据倾斜,假设我们直接使用join,这里用inner join举例
joined = table1.join(table2, table1["id"] == table2["id"], "inner")

# 先对连接键进行排序,为sort-merge join做准备

sorted_table1 = table1.sortWithinPartitions("id")
sorted_table2 = table2.sortWithinPartitions("id")

# 使用sort-merge join进行连接
joined = sorted_table1.join(sorted_table2, sorted_table1["id"] == sorted_table2["id"], "inner")

# 触发Action,查看执行计划,此时可以去Spark WebUI查看任务执行情况
joined.count()

# 停止SparkSession
spark.stop()

代码解释

初始化SparkSession:创建一个SparkSession对象,这是与Spark交互的入口。

python 复制代码
spark = SparkSession.builder.appName("SortMergeJoinExample").getOrCreate()

加载数据并查看表大小:从Parquet文件加载两张表,并打印出它们的行数,以此来了解表的规模。

python 复制代码
table1 = spark.read.parquet("path/to/table1.parquet")
table2 = spark.read.parquet("path/to/table2.parquet")

print("table1 size: ", table1.count())
print("table2 size: ", table2.count())

数据预处理:在进行 sort-merge join 之前,对两个表按照连接键 id 在每个分区内进行排序。

python 复制代码
sorted_table1 = table1.sortWithinPartitions("id")
sorted_table2 = table2.sortWithinPartitions("id")

执行sort-merge join:利用排序后的表,执行 sort-merge join 操作,这里选择的是内连接。

python 复制代码
joined = sorted_table1.join(sorted_table2, sorted_table1["id"] == sorted_table2["id"], "inner")

触发Action并查看执行情况:调用 count() 方法触发一个Action,此时Spark会真正执行整个计算流程。与此同时,可以打开Spark WebUI(通常是 http://your-spark-master:4040 ),在 Stages 页面查看任务执行计划,尤其是查看各个阶段的数据分布情况,确认数据倾斜是否得到解决。

python 复制代码
joined.count()

停止SparkSession:任务完成后,关闭SparkSession释放资源。

python 复制代码
spark.stop()

要在Spark WebUI中查看数据倾斜:

  • 在执行 joined.count() 后,迅速打开浏览器访问Spark WebUI。进入 Stages 标签页,找到正在执行的 join 相关阶段。查看每个任务的处理数据量,如果之前存在数据倾斜,经过 sort-merge join 处理后,各个任务处理的数据量应该相对均匀。
相关推荐
F_D_Z1 分钟前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
daidaidaiyu37 分钟前
一文入门 LangGraph 开发
python·ai
青云交1 小时前
Java 大视界 -- Java 大数据在智能物流无人配送车路径规划与协同调度中的应用
java·spark·路径规划·大数据分析·智能物流·无人配送车·协同调度
不知更鸟2 小时前
前端报错:快速解决Django接口404问题
前端·python·django
4***72132 小时前
【玩转全栈】----Django模板语法、请求与响应
数据库·python·django
梁正雄2 小时前
1、python基础语法
开发语言·python
ituff3 小时前
微软认证考试又免费了
后端·python·flask
梁正雄4 小时前
2、Python流程控制
开发语言·python
Eric.Lee20215 小时前
ubuntu 安装 Miniconda
linux·运维·python·ubuntu·miniconda
无心水5 小时前
【Python实战进阶】1、Python高手养成指南:四阶段突破法从入门到架构师
开发语言·python·django·matplotlib·gil·python实战进阶·python工程化实战进阶