Python脚本:不同Oracle库的表进行读写

准备工作:

①下载cx_Oracle、pandas、numpy包;

python 复制代码
pip install cx_Oracle
pip install pandas
pip install numpy

②已知两库的连接信息;

库1的主要为读数据表,并将表内容进行条件转换

python 复制代码
sql = ('SELECT NAME, SEX, AGE, PROVINCE, RANK, INCOME, BELONG_PROJECT, REPORT_TIME, '
       'APPROVER, APPROVAL_STATUS, SERVICE_RATING FROM REIMBURSEMENT_FIFTY_THOUSAND WHERE ROWNUM <= 10')

conn_govern_dev = cx_Oracle.connect(数据库1的连接信息)
cursor_govern_dev = conn_govern_dev.cursor()

# 读取govern_dev库的表
df = pd.read_sql(sql, conn_govern_dev)

# 性别为男切换为boy,女切换为girl
def myfunc_sex(x):
    if x == '男':
        return 'boy'
    elif x == '女':
        return 'girl'
    else:
        return 'maybe'

df['SEX'] = df['SEX'].map(myfunc_sex)

# 对工资列,低于1万的乘以3,加一个值,高于1万的除以2,加另外一个值
def myfunc_income(x, *args, **args_dict):
    if x < 10000:
        return x * 3 + args_dict['high']
    else:
        return x / 2 + args_dict['low']

df['INCOME'] = df['INCOME'].apply(myfunc_income, low=0.2, high=0.1)

cursor_govern_dev.close()
conn_govern_dev.close()

库2的操作就是将库1的表进行写入

python 复制代码
conn_test = cx_Oracle.connect(数据库2的连接信息)

df_array = np.array(df)  # dataframe转换array
df_list = df_array.tolist()  # array转换list
# print(df_list)
sql = ('insert into REIMBURSEMENT_FIFTY_THOUSAND(NAME, SEX, AGE, PROVINCE, RANK, '
       'INCOME, BELONG_PROJECT, REPORT_TIME, APPROVER, APPROVAL_STATUS, SERVICE_RATING) '
       'values(:1,:2,:3,:4,:5,:6,:7,:8,:9,:10,:11)')
cur = conn_test.cursor()
# 写入test库的表
cur.executemany(sql, df_list)
cur.close()
conn_test.commit()
conn_test.close()

完整代码

python 复制代码
# -*- coding: utf8 -*-
import cx_Oracle
import pandas as pd
import numpy as np

sql = ('SELECT NAME, SEX, AGE, PROVINCE, RANK, INCOME, BELONG_PROJECT, REPORT_TIME, '
       'APPROVER, APPROVAL_STATUS, SERVICE_RATING FROM REIMBURSEMENT_FIFTY_THOUSAND WHERE ROWNUM <= 10')

conn_govern_dev = cx_Oracle.connect(库1的链接信息)
cursor_govern_dev = conn_govern_dev.cursor()

# 读取govern_dev库的表
df = pd.read_sql(sql, conn_govern_dev)

# 性别为男切换为boy,女切换为girl
def myfunc_sex(x):
    if x == '男':
        return 'boy'
    elif x == '女':
        return 'girl'
    else:
        return 'maybe'

df['SEX'] = df['SEX'].map(myfunc_sex)

# 对工资列,低于1万的乘以3,加一个值,高于1万的除以2,加另外一个值
def myfunc_income(x, *args, **args_dict):
    if x < 10000:
        return x * 3 + args_dict['high']
    else:
        return x / 2 + args_dict['low']

df['INCOME'] = df['INCOME'].apply(myfunc_income, low=0.2, high=0.1)

cursor_govern_dev.close()
conn_govern_dev.close()

conn_test = cx_Oracle.connect(库2的链接信息)

df_array = np.array(df)  # dataframe转换array
df_list = df_array.tolist()  # array转换list
# print(df_list)
sql = ('insert into REIMBURSEMENT_FIFTY_THOUSAND(NAME, SEX, AGE, PROVINCE, RANK, '
       'INCOME, BELONG_PROJECT, REPORT_TIME, APPROVER, APPROVAL_STATUS, SERVICE_RATING) '
       'values(:1,:2,:3,:4,:5,:6,:7,:8,:9,:10,:11)')
cur = conn_test.cursor()
# 写入test库的表
cur.executemany(sql, df_list)
cur.close()
conn_test.commit()
conn_test.close()
相关推荐
麦聪聊数据7 分钟前
Web原生架构如何优化数据库权限管理:简化操作与增强安全性
数据库
如竟没有火炬10 分钟前
全排列——交换的思想
开发语言·数据结构·python·算法·leetcode·深度优先
机器瓦力28 分钟前
Trae使用:重构一个项目
python·ai编程
jarreyer1 小时前
python离线包安装方法总结
开发语言·python
ldmd2841 小时前
Go语言实战:入门篇-4:与数据库、redis、消息队列、API
数据库·redis·缓存
是Dream呀1 小时前
工业级时序数据库选型指南:技术架构与场景化实践
数据库·架构·时序数据库
码银1 小时前
【python】基于 生活方式与健康数据预测数据集(Lifestyle and Health Risk Prediction)的可视化练习,附数据集源文件。
开发语言·python·生活
骑士9991111 小时前
时序数据库TDengine用法
数据库·时序数据库·tdengine
Pluchon1 小时前
硅基计划5.0 MySQL 叁 E-R关系图&联合/多表查询&三大连接&子查询&合并查询
开发语言·数据库·学习·mysql