Python脚本:不同Oracle库的表进行读写

准备工作:

①下载cx_Oracle、pandas、numpy包;

python 复制代码
pip install cx_Oracle
pip install pandas
pip install numpy

②已知两库的连接信息;

库1的主要为读数据表,并将表内容进行条件转换

python 复制代码
sql = ('SELECT NAME, SEX, AGE, PROVINCE, RANK, INCOME, BELONG_PROJECT, REPORT_TIME, '
       'APPROVER, APPROVAL_STATUS, SERVICE_RATING FROM REIMBURSEMENT_FIFTY_THOUSAND WHERE ROWNUM <= 10')

conn_govern_dev = cx_Oracle.connect(数据库1的连接信息)
cursor_govern_dev = conn_govern_dev.cursor()

# 读取govern_dev库的表
df = pd.read_sql(sql, conn_govern_dev)

# 性别为男切换为boy,女切换为girl
def myfunc_sex(x):
    if x == '男':
        return 'boy'
    elif x == '女':
        return 'girl'
    else:
        return 'maybe'

df['SEX'] = df['SEX'].map(myfunc_sex)

# 对工资列,低于1万的乘以3,加一个值,高于1万的除以2,加另外一个值
def myfunc_income(x, *args, **args_dict):
    if x < 10000:
        return x * 3 + args_dict['high']
    else:
        return x / 2 + args_dict['low']

df['INCOME'] = df['INCOME'].apply(myfunc_income, low=0.2, high=0.1)

cursor_govern_dev.close()
conn_govern_dev.close()

库2的操作就是将库1的表进行写入

python 复制代码
conn_test = cx_Oracle.connect(数据库2的连接信息)

df_array = np.array(df)  # dataframe转换array
df_list = df_array.tolist()  # array转换list
# print(df_list)
sql = ('insert into REIMBURSEMENT_FIFTY_THOUSAND(NAME, SEX, AGE, PROVINCE, RANK, '
       'INCOME, BELONG_PROJECT, REPORT_TIME, APPROVER, APPROVAL_STATUS, SERVICE_RATING) '
       'values(:1,:2,:3,:4,:5,:6,:7,:8,:9,:10,:11)')
cur = conn_test.cursor()
# 写入test库的表
cur.executemany(sql, df_list)
cur.close()
conn_test.commit()
conn_test.close()

完整代码

python 复制代码
# -*- coding: utf8 -*-
import cx_Oracle
import pandas as pd
import numpy as np

sql = ('SELECT NAME, SEX, AGE, PROVINCE, RANK, INCOME, BELONG_PROJECT, REPORT_TIME, '
       'APPROVER, APPROVAL_STATUS, SERVICE_RATING FROM REIMBURSEMENT_FIFTY_THOUSAND WHERE ROWNUM <= 10')

conn_govern_dev = cx_Oracle.connect(库1的链接信息)
cursor_govern_dev = conn_govern_dev.cursor()

# 读取govern_dev库的表
df = pd.read_sql(sql, conn_govern_dev)

# 性别为男切换为boy,女切换为girl
def myfunc_sex(x):
    if x == '男':
        return 'boy'
    elif x == '女':
        return 'girl'
    else:
        return 'maybe'

df['SEX'] = df['SEX'].map(myfunc_sex)

# 对工资列,低于1万的乘以3,加一个值,高于1万的除以2,加另外一个值
def myfunc_income(x, *args, **args_dict):
    if x < 10000:
        return x * 3 + args_dict['high']
    else:
        return x / 2 + args_dict['low']

df['INCOME'] = df['INCOME'].apply(myfunc_income, low=0.2, high=0.1)

cursor_govern_dev.close()
conn_govern_dev.close()

conn_test = cx_Oracle.connect(库2的链接信息)

df_array = np.array(df)  # dataframe转换array
df_list = df_array.tolist()  # array转换list
# print(df_list)
sql = ('insert into REIMBURSEMENT_FIFTY_THOUSAND(NAME, SEX, AGE, PROVINCE, RANK, '
       'INCOME, BELONG_PROJECT, REPORT_TIME, APPROVER, APPROVAL_STATUS, SERVICE_RATING) '
       'values(:1,:2,:3,:4,:5,:6,:7,:8,:9,:10,:11)')
cur = conn_test.cursor()
# 写入test库的表
cur.executemany(sql, df_list)
cur.close()
conn_test.commit()
conn_test.close()
相关推荐
碳酸的唐2 小时前
A* 工程实践全指南:从启发式设计到可视化与性能优化
python·神经网络
安当加密2 小时前
达梦数据库TDE透明加密解决方案:构建高安全数据存储体系
网络·数据库·安全
Jabes.yang5 小时前
Java求职面试实战:从Spring Boot到微服务架构的技术探讨
java·数据库·spring boot·微服务·面试·消息队列·互联网大厂
倔强青铜三5 小时前
苦练Python第64天:从零掌握多线程,threading模块全面指南
人工智能·python·面试
阿巴~阿巴~6 小时前
Redis 核心文件、命令与操作指南
数据库·redis·缓存·客户端·服务端
koping_wu6 小时前
【Redis】用Redis实现分布式锁、乐观锁
数据库·redis·分布式
abcefg_h6 小时前
关系型数据库与非关系型数据库
数据库·nosql
Q26433650236 小时前
【有源码】基于Hadoop生态的大数据共享单车数据分析与可视化平台-基于Python与大数据的共享单车多维度数据分析可视化系统
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
海奥华27 小时前
SQLEXPLAIN 详解
数据库·mysql