深度学习常见术语解释

  • 正例与负例: 在分类任务中,通常将目标类别称为正例(positive),非目标类别称为负例(negative)。

  • True Positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数。

  • False Positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数。

  • False Negatives(FN): 被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数。

  • Precision(精确率): 预测为正例的样本中实际为正例的比例,计算公式为Precision=TP/(TP+FP)。

  • Recall(召回率): 实际为正例的样本中被正确预测为正例的比例,计算公式为Recall=TP/(TP+FN)。也称为灵敏度(Sensitivity)、真阳性率(TPR)。

  • IoU(Intersection over Union): 衡量预测边界框与真实边界框重叠程度的指标,是目标检测中的一个重要概念。

  • AP(Average Precision): 平均精确度,表示在不同召回率下的精确率的平均值,通常通过绘制P-R(Precision-Recall)曲线并计算其下的面积来得到。

  • IoU(Intersection over Union) :交并比计算的是"预测的边框"和"真实的边框"的交叠率,即它们的交集和并集的比值。这个比值用于衡量预测边框与真实边框的重叠程度,从而评估目标检测的准确性。**IoU = 交集面积 / 并集面积。**一般情况下,认为IoU大于0.5就是一个不错的预测结果。

  • Epochs: 整个数据集通过神经网络前向传播和反向传播一次的过程。换句话说,一个epoch意味着每一个训练样本都被用来更新一次网络的权重。Epoch的数量通常决定了模型学习的总时间。更多的epoch通常意味着模型有更多的机会从数据中学习,但也可能导致过拟合,即模型在训练数据上表现得太好,以至于它无法很好地泛化到新的、未见过的数据。选择合适的epoch数量通常需要一些实验和调整。常见的做法是首先选择一个相对较大的epoch数量,然后观察模型在验证集上的表现。当验证集上的性能开始下降时,这可能意味着模型已经开始过拟合,此时可以停止训练。

  • Batch :每次迭代(或每次权重更新)中使用的一组训练样本。在训练过程中,整个数据集被分成多个小批量(或简称为batch),然后逐一用于训练。较大的batch可以加速训练,但可能减少模型的泛化能力。较小的batch可以提高模型的泛化能力,但可能需要更长的训练时间。 作用:

    内存管理:由于现代计算机的内存限制,通常无法一次性将所有数据加载到内存中。通过分批处理,可以有效地管理内存使用。
    并行处理:使用GPU等并行计算设备时,分批处理可以显著提高训练速度。
    正则化效果:使用较小的batch大小通常可以引入一种称为"随机梯度下降(SGD)"的正则化效果,这有助于防止模型过拟合。

  • 假阳性率(FPR):假阳性率是指在二分类问题中,被错误地判定为正例的负例样本的比例。假阳性率(FPR)和真阳性率(TPR)是评估分类模型性能的重要指标,特别是在二分类问题中。计算公式:FPR = FP / (FP + TN)

  • Metrics(评估指标) :Metrics是一个更广泛的概念,它指的是用于评估模型性能的各种指标。在深度学习中,可以根据不同的任务需求选择不同的评估指标。常见的评估指标包括但不限于:

    准确率(Accuracy)、精确率(Precision)、召回率(Recall)。
    F1分数(F1 Score):F1分数是精确率和召回率的调和平均数,用于综合评估模型的性能。F1分数的计算公式为:F1 = 2 * (Precision * Recall) / (Precision + Recall)。

    ROC曲线与AUC值:ROC曲线是一种二元分类模型分类效果的分析工具,它通过绘制假阳性率(FPR)和真阳性率(TPR)之间的关系来评估模型的性能。AUC值则是ROC曲线下的面积,用于量化模型的性能。AUC值越大,表示模型的性能越好。

  • Accuracy(准确率) :准确率是深度学习中最常用的评估指标之一,它直接反映了模型预测正确的样本数量占总样本数量的比例。准确率的计算公式: accuracy = (TP+TN) / 总样本数 。准确率是一个整体性指标,它不考虑模型在各个类别上的表现差异,只关注整体预测正确的比例。

相关推荐
草莓熊Lotso4 小时前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_5 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱7 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º8 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee10 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º11 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys11 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567811 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子11 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能12 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算