EPSANet2021笔记


来源:

EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network

相关工作:

#注意力机制 #多尺度特征表示

创新点:

贡献:

  1. 建立了长距离通道依赖关系
  2. 有效获取利用不同尺度特征图的空间信息

问题:

  • 作者提供代码和文章描述处理过程不一致
  • 在小样本上训练测试效果不佳

代码:

python 复制代码
# ---------------------------------------  
# 论文: EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network (AICV 2021)  
# Github:https://github.com/murufeng/EPSANet  
# ---------------------------------------  
import torch  
from torch import nn  
  
  
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1, groups=1):  
    """standard convolution with padding"""  
    return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,  
                     padding=padding, dilation=dilation, groups=groups, bias=False)  
  
  
def conv1x1(in_planes, out_planes, stride=1):  
    """1x1 convolution"""  
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)  
  
  
class SEWeightModule(nn.Module):  
  
    def __init__(self, channels, reduction=16):  
        super(SEWeightModule, self).__init__()  
        self.avg_pool = nn.AdaptiveAvgPool2d(1)  
        self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0)  
        self.relu = nn.ReLU(inplace=True)  
        self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0)  
        self.sigmoid = nn.Sigmoid()  
  
    def forward(self, x):  
        out = self.avg_pool(x)  
        out = self.fc1(out)  
        out = self.relu(out)  
        out = self.fc2(out)  
        weight = self.sigmoid(out)  
  
        return weight  
  
  
class PSAModule(nn.Module):  
  
    def __init__(self, inplans, planes, conv_kernels=[3, 5, 7, 9], stride=1, conv_groups=[1, 4, 8, 16]):  
        super(PSAModule, self).__init__()  
        self.conv_1 = conv(inplans, planes // 4, kernel_size=conv_kernels[0], padding=conv_kernels[0] // 2,  
                           stride=stride, groups=conv_groups[0])  
        self.conv_2 = conv(inplans, planes // 4, kernel_size=conv_kernels[1], padding=conv_kernels[1] // 2,  
                           stride=stride, groups=conv_groups[1])  
        self.conv_3 = conv(inplans, planes // 4, kernel_size=conv_kernels[2], padding=conv_kernels[2] // 2,  
                           stride=stride, groups=conv_groups[2])  
        self.conv_4 = conv(inplans, planes // 4, kernel_size=conv_kernels[3], padding=conv_kernels[3] // 2,  
                           stride=stride, groups=conv_groups[3])  
        self.se = SEWeightModule(planes // 4)  
        self.split_channel = planes // 4  
        self.softmax = nn.Softmax(dim=1)  
  
    def forward(self, x):  
        batch_size = x.shape[0]  
        x1 = self.conv_1(x)  
        x2 = self.conv_2(x)  
        x3 = self.conv_3(x)  
        x4 = self.conv_4(x)  
  
        feats = torch.cat((x1, x2, x3, x4), dim=1)  
        feats = feats.view(batch_size, 4, self.split_channel, feats.shape[2], feats.shape[3])  
  
        x1_se = self.se(x1)  
        x2_se = self.se(x2)  
        x3_se = self.se(x3)  
        x4_se = self.se(x4)  
  
        x_se = torch.cat((x1_se, x2_se, x3_se, x4_se), dim=1)  
        attention_vectors = x_se.view(batch_size, 4, self.split_channel, 1, 1)  
        attention_vectors = self.softmax(attention_vectors)  
        feats_weight = feats * attention_vectors  
        for i in range(4):  
            x_se_weight_fp = feats_weight[:, i, :, :]  
            if i == 0:  
                out = x_se_weight_fp  
            else:  
                out = torch.cat((x_se_weight_fp, out), 1)  
  
        return out  
  
  
#   输入 N C H W,  输出 N C H Wif __name__ == '__main__':  
    input = torch.randn(3, 64, 32, 32)  
    s2att = PSAModule(inplans=64, planes=64)  
    output = s2att(input)  
    print(output.shape)
    
相关推荐
黎宇幻生1 小时前
Java全栈学习笔记39
java·笔记·学习
遇印记4 小时前
大二java学习笔记:二维数组
java·笔记·学习
bnsarocket6 小时前
Verilog和FPGA的自学笔记6——计数器(D触发器同步+异步方案)
笔记·fpga开发·verilog·自学·硬件编程
LK_077 小时前
【Open3D】Ch.3:顶点法向量估计 | Python
开发语言·笔记·python
li星野7 小时前
打工人日报#20251011
笔记·程序人生·fpga开发·学习方法
摇滚侠7 小时前
Spring Boot 3零基础教程,yml配置文件,笔记13
spring boot·redis·笔记
QT 小鲜肉7 小时前
【个人成长笔记】在Ubuntu中的Linux系统安装 anaconda 及其相关终端命令行
linux·笔记·深度学习·学习·ubuntu·学习方法
QT 小鲜肉7 小时前
【个人成长笔记】在Ubuntu中的Linux系统安装实验室WIFI驱动安装(Driver for Linux RTL8188GU)
linux·笔记·学习·ubuntu·学习方法
急急黄豆8 小时前
MADDPG学习笔记
笔记·学习
Chloeis Syntax8 小时前
栈和队列笔记2025-10-12
java·数据结构·笔记·