利用metaGPT多智能体框架实现智能体-1

1.metaGPT简介

MetaGPT 是一个基于大语言模型(如 GPT-4)的多智能体协作框架,旨在通过模拟人类团队的工作模式,让多个 AI 智能体分工合作,共同完成复杂的任务。它通过赋予不同智能体特定的角色(如产品经理、工程师、测试员等),并定义标准化的工作流程,显著提升了任务执行的效率和可靠性。
核心特点

  1. 多智能体协作
  • 不同角色的智能体(如项目经理、开发工程师、设计师等)各司其职,协同完成任务。
  • 支持智能体间的信息共享与动态交互,模拟真实团队协作。
  1. 标准化流程(SOP)
  • 将任务分解为需求分析、设计、开发、测试等标准化步骤,减少大模型常见的逻辑错误或"幻觉"。

  • 例如,开发软件时,产品经理先输出需求文档,工程师再编写代码,测试员验证功能。

  1. 领域专业知识嵌入
  • 为智能体注入领域知识(如软件工程规范、金融分析模板),提升输出的专业性。

  • 支持自定义角色知识库,适应不同垂直场景。

  1. 自动化工作流
  • 从任务分配到最终交付实现全流程自动化,减少人工干预。

  • 可处理代码生成、数据分析、文档撰写等复杂任务。

  1. 人类-AI 协同
  • 允许人类介入关键节点(如审核设计文档),确保结果符合预期。

2. 环境安装和配置

首先要创建虚拟环境,请自行创建,但是要求python的版本>=3.9,<=3.11(2025年1月25日测试结果)

然后开始安装metagpt在官方教程中说到可以直接通过pip安装

bash 复制代码
pip install metagpt

但是实际上这样可能回出现各种问题,我这里还是推荐开发模式安装,直接下载源码然后安装:

bash 复制代码
git clone https://github.com/geekan/MetaGPT.git
cd /your/path/to/MetaGPT
pip install -e .

接下来需要配置你的大模型

在你拉取到的metagpt的源码文件夹下面有个config文件,里面有个config2.yaml文件,可以将你的大模型的相关配置方法这里:

bash 复制代码
llm:
  api_type: 'openai' # or azure / ollama / groq etc. Check LLMType for more options
  api_key: 'sk-...' # YOUR_API_KEY
  model: 'gpt-4-turbo' # or gpt-3.5-turbo
  # base_url: 'https://api.openai.com/v1'  # or any forward url.
  # proxy: 'YOUR_LLM_PROXY_IF_NEEDED'  # Optional. If you want to use a proxy, set it here.
  # pricing_plan: 'YOUR_PRICING_PLAN' # Optional. If your pricing plan uses a different name than the `model`.

更多的配置请参考官方配置教程大模型配置

3.快速开始

接下来让我们来快速的试试metagpt可以实现什么功能

我们使用默认的角色

bash 复制代码
import asyncio
from metagpt.roles import (
    Architect,
    Engineer,
    ProductManager,
    ProjectManager,
)
from metagpt.team import Team
async def startup(idea: str):
    company = Team()
    company.hire(
        [
            ProductManager(),
            Architect(),
            ProjectManager(),
            Engineer(),
        ]
    )
    company.invest(investment=3.0)
    company.run_project(idea=idea)

    await company.run(n_round=5)

asyncio.run(startup(idea="开发一个网页端的刷题网站"))

直接运行上面的代码就可以得到完整的项目结构

但是目前似乎不能直接运行,会报一些错误,还有很大的优化空间,可能也和大模型的性能有关(这里用的glm-9b)

相关推荐
hkNaruto6 分钟前
【AI】AI学习笔记:LangGraph 与 LangChain的关系以及系统性学习路线选择
笔记·学习·langchain
jrlong17 分钟前
DataWhale大模型基础与量化微调task3学习笔记(第 5章:深入大模型架构_MoE 架构解析)
笔记·学习
BHXDML18 分钟前
第九章:EM 算法
人工智能·算法·机器学习
q_354888515340 分钟前
AI大模型:python新能源汽车推荐系统 协同过滤推荐算法 Echarts可视化 Django框架 大数据毕业设计(源码+文档)✅
大数据·人工智能·python·机器学习·信息可视化·汽车·推荐算法
陆研一1 小时前
2026国内无痛使用Gemini 3与GPT-5.2
人工智能·ai·chatgpt
Honmaple1 小时前
加载 .env 文件
人工智能
却道天凉_好个秋1 小时前
目标检测算法与原理(三):PyTorch实现迁移学习
pytorch·算法·目标检测
愚公搬代码1 小时前
【愚公系列】《AI+直播营销》038-直播间装修和布置(直播间的设备选择)
人工智能
就爱吃香菜11 小时前
跨越网络的连接艺术:实战基于 SSE 传输层的远程 MCP 服务部署,实现云端 AI 与本地资产联动
网络·人工智能
lusananan2 小时前
Transformer为何一统天下?深度解析RNN、CNN的局限与注意力机制的崛起
人工智能·游戏