langchain 入门(一)

导读

环境:OpenEuler、Windows 11、WSL 2、Python 3.12.3 langchain 0.3.15

背景:前期忙碌的开发阶段结束,需要沉淀自己的应用知识,过一遍LangChain

时间:20250124

说明:使用langchain,实现基本的翻译应用,分别为:普通模式、流式输出、多语言模式

官方文档:简单LLM应用

1、安装模块

python 复制代码
pip install langchain langchain_openai

当前这个时间会自动安装共计44个packages,真多

2、模型的apikey

推荐免费的阿里云百炼:阿里云百炼 - 通义千问 - QwQ-32B-Preview

具体模型自己选择,如果不知道如何选择,可使用我给的链接,注册即有免费的额度

请注意红框内的信息,此处说明可以免费使用,可按照图示获取apikey

接口调用方法文档,如下:

阿里云百炼 - 通义千问 - QwQ-32B-Preview-OpenAI接口

3、创建应用

该应用实现翻译的功能,自英文翻译为中文(官方案例为英文到意大利文)

python 复制代码
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage, SystemMessage

client = ChatOpenAI(
    # 根据自己的需求配置,可以是环境变量,也可以是文本内容
    api_key="sk-005dc4fxxxxxxxxxxxxxxxxxxxxxxx5415ca", 
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
    model="qwen-plus"
)

messages = [
    # 系统提示词:将英文翻译为中文
    SystemMessage("Translate the following from English into chinese"),
    HumanMessage("hi!"),
]

aimessages = client.invoke(messages)
print(aimessages.content)

结果如下:

python 复制代码
(venv) [jack@Laptop-L14-gen4 langtest]$ /home/jack/langtest/venv/bin/python /home/jack/langtest/chain_test/simple_LLM_application.py
你好!

4、流式输出

现在主流都是(异步)流式输出,langchain也支持该功能

python 复制代码
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage, SystemMessage

client = ChatOpenAI(
    # 根据自己的需求配置,可以是环境变量,也可以是文本内容
    api_key="sk-005dc4fxxxxxxxxxxxxxxxxxxxxxxx5415ca", 
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
    model="qwen-plus"
)

messages = [
    # 系统提示词:将英文翻译为中文
    SystemMessage("Translate the following from English into chinese"),
    HumanMessage("Translate the following from English into chinese!"),
]

for token in client.stream(messages):
    print(token.content, end="|")

解决如下:

python 复制代码
[jack@Laptop-L14-gen4 langtest]$ /home/jack/langtest/venv/bin/python /home/jack/langtest/chain_test/simple_LLM_application.py
|请|将|以下|内容从英语翻译|成中文!||

5、灵活控制提示词

通过控制提示词,实现多语言额翻译功能

python 复制代码
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

system_template = "Translate the following from English into {language}"

prompt_template = ChatPromptTemplate.from_messages(
    [("system", system_template), ("user", "{text}")]
)
client = ChatOpenAI(
    # 根据自己的需求配置,可以是环境变量,也可以是文本内容
    api_key="sk-005dc4fxxxxxxxxxxxxxxxxxxxxxxx5415ca", 
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
    model="qwen-plus"
)

prompt = prompt_template.invoke({"language": "Chinese", "text": "Finally, we can invoke the chat model on the formatted prompt!"})

prompt.to_messages()
response = client.invoke(prompt)
print(response.content)

结果:

python 复制代码
(venv) [jack@Laptop-L14-gen4 langtest]$ /home/jack/langtest/venv/bin/python /home/jack/langtest/chain_test/simple_LLM_application.py
最后,我们可以对格式化的提示调用聊天模型了!
相关推荐
北冥有一鲲12 小时前
LangChain.js:RAG 深度解析与全栈实践
开发语言·javascript·langchain
kimi-22215 小时前
LangChain 中少样本提示(Few-shot Prompting)
langchain
北冥有一鲲20 小时前
LangChain.js:Tool、Memory 与 Agent 的深度解析与实战
开发语言·javascript·langchain
七夜zippoe20 小时前
使用OpenLLM管理轻量级大模型服务
架构·langchain·大模型·kv·轻量
玖日大大1 天前
LangGraph 深度解析:构建强大智能体的新一代框架
人工智能·语言模型·架构·langchain
Tinero2 天前
LangChain 的核心概念与实现案例
langchain
Mr.朱鹏2 天前
大模型入门学习路径(Java开发者版)下
java·python·学习·微服务·langchain·大模型·llm
哥本哈士奇2 天前
Streamlit + LangChain 1.0 简单实现智能问答前后端
langchain·streamlit
大模型真好玩2 天前
LangGraph1.0速通指南(二)—— LangGraph1.0 条件边、记忆、人在回路
人工智能·langchain·agent
蜂蜜黄油呀土豆2 天前
RAG 的基石:文本嵌入模型与向量数据库
langchain·大语言模型·embedding·向量数据库·rag