leetcode - 127. Word Ladder

Description

A transformation sequence from word beginWord to word endWord using a dictionary wordList is a sequence of words beginWord -> s1 -> s2 -> ... -> sk such that:

Every adjacent pair of words differs by a single letter.

Every si for 1 <= i <= k is in wordList. Note that beginWord does not need to be in wordList.

sk == endWord

Given two words, beginWord and endWord, and a dictionary wordList, return the number of words in the shortest transformation sequence from beginWord to endWord, or 0 if no such sequence exists.

Example 1:

复制代码
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
Output: 5
Explanation: One shortest transformation sequence is "hit" -> "hot" -> "dot" -> "dog" -> cog", which is 5 words long.

Example 2:

复制代码
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
Output: 0
Explanation: The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.

Constraints:

复制代码
1 <= beginWord.length <= 10
endWord.length == beginWord.length
1 <= wordList.length <= 5000
wordList[i].length == beginWord.length
beginWord, endWord, and wordList[i] consist of lowercase English letters.
beginWord != endWord
All the words in wordList are unique.

Solution

BFS, start with endWord, every time change one character to decide if we want to add this to the queue.

Time complexity: o ( n ∗ n ∗ w o r d . l e n + n ) o(n*n*word.len + n) o(n∗n∗word.len+n), where n is the length of wordList, word.len is the length of each word in wordList

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
        queue = collections.deque([(endWord, 1)])
        visited = set()
        wordList = set(wordList)
        if endWord not in wordList:
            return 0
        while queue:
            cur_word, step = queue.popleft()
            if cur_word in visited:
                continue
            visited.add(cur_word)
            if cur_word == beginWord:
                return step
            for i in range(len(cur_word)):
                for new_char in 'abcdefghijklmnopqrstuvwxyz':
                    if new_char == cur_word[i]:
                        continue
                    new_word = f'{cur_word[:i]}{new_char}{cur_word[i+1:]}'
                    if new_word in wordList or new_word == beginWord:
                        queue.append((new_word, step + 1))
        return 0
相关推荐
阿蒙Amon9 天前
《C#图解教程 第5版》深度推荐
开发语言·c#
暖馒9 天前
C#委托与事件的区别
开发语言·c#
JosieBook9 天前
【C#】C#异步编程:异步延时 vs 阻塞延时深度对比
c#·多线程·异步·阻塞
甄天9 天前
WPF中MVVM和MVVMLight模式
c#·wpf·visual studio
亮亮爱刷题9 天前
飞往大厂梦之算法提升-7
数据结构·算法·leetcode·动态规划
冰茶_9 天前
ASP.NET Core API文档与测试实战指南
后端·学习·http·ui·c#·asp.net
_oP_i9 天前
实现 “WebView2 获取word选中内容
开发语言·c#·word
zmuy9 天前
124. 二叉树中的最大路径和
数据结构·算法·leetcode
chao_7899 天前
滑动窗口题解——找到字符串中所有字母异位词【LeetCode】
数据结构·算法·leetcode
Alfred king9 天前
面试150跳跃游戏
python·leetcode·游戏·贪心算法