自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合

1. 引言

简要介绍线性回归模型及其在机器学习中的应用。

2. 创建自定义数据集

通过生成一个简单的自定义数据集来模拟问题。可以使用numpy生成数据。

复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成自定义数据
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

3. 使用scikit-learn实现线性回归

使用LinearRegression类拟合数据并进行预测。

复制代码
from sklearn.linear_model import LinearRegression

# 初始化线性回归模型
lin_reg = LinearRegression()

# 拟合模型
lin_reg.fit(X, y)

# 预测
y_pred = lin_reg.predict(X)

# 输出模型参数
print(f"模型的截距:{lin_reg.intercept_}")
print(f"模型的系数:{lin_reg.coef_}")

4. 可视化拟合结果

绘制原始数据与回归线。

复制代码
plt.scatter(X, y, color='blue', label='数据点')
plt.plot(X, y_pred, color='red', label='拟合线')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()

5. 结论

使用scikit-learn进行线性回归拟合的步骤,并强调模型参数的含义。

相关推荐
TF男孩6 小时前
ARQ:一款低成本的消息队列,实现每秒万级吞吐
后端·python·消息队列
该用户已不存在11 小时前
Mojo vs Python vs Rust: 2025年搞AI,该学哪个?
后端·python·rust
站大爷IP13 小时前
Java调用Python的5种实用方案:从简单到进阶的全场景解析
python
用户83562907805118 小时前
从手动编辑到代码生成:Python 助你高效创建 Word 文档
后端·python
c8i18 小时前
python中类的基本结构、特殊属性于MRO理解
python
liwulin050619 小时前
【ESP32-CAM】HELLO WORLD
python
Doris_202319 小时前
Python条件判断语句 if、elif 、else
前端·后端·python
Doris_202319 小时前
Python 模式匹配match case
前端·后端·python
这里有鱼汤19 小时前
Python量化实盘踩坑指南:分钟K线没处理好,小心直接亏钱!
后端·python·程序员
大模型真好玩20 小时前
深入浅出LangGraph AI Agent智能体开发教程(五)—LangGraph 数据分析助手智能体项目实战
人工智能·python·mcp