自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合

1. 引言

简要介绍线性回归模型及其在机器学习中的应用。

2. 创建自定义数据集

通过生成一个简单的自定义数据集来模拟问题。可以使用numpy生成数据。

复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成自定义数据
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

3. 使用scikit-learn实现线性回归

使用LinearRegression类拟合数据并进行预测。

复制代码
from sklearn.linear_model import LinearRegression

# 初始化线性回归模型
lin_reg = LinearRegression()

# 拟合模型
lin_reg.fit(X, y)

# 预测
y_pred = lin_reg.predict(X)

# 输出模型参数
print(f"模型的截距:{lin_reg.intercept_}")
print(f"模型的系数:{lin_reg.coef_}")

4. 可视化拟合结果

绘制原始数据与回归线。

复制代码
plt.scatter(X, y, color='blue', label='数据点')
plt.plot(X, y_pred, color='red', label='拟合线')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()

5. 结论

使用scikit-learn进行线性回归拟合的步骤,并强调模型参数的含义。

相关推荐
岱宗夫up几秒前
机器学习:标准化流模型(NF)
人工智能·python·机器学习·生成对抗网络
狂奔蜗牛飙车1 分钟前
Python学习之路-循环语句学习详解
python·学习·python学习·#python学习笔记·循环语句详解
花月mmc4 分钟前
CanMV K230 波形识别——整体部署(4)
人工智能·python·嵌入式硬件·深度学习·信号处理
lang2015092824 分钟前
Java WebSocket API:JSR-356详解
java·python·websocket
jiang_changsheng27 分钟前
环境管理工具全景图与深度对比
java·c语言·开发语言·c++·python·r语言
linjoe9936 分钟前
【Medical AI\pathology】WSI 的 JPEG 压缩质量与存储效率权衡分析
python·图像压缩·计算病理学·wsi
Fightting8841 分钟前
Tkinter Button bind hover message
开发语言·python
玄同7651 小时前
LangChain 1.0 模型接口:多厂商集成与统一调用
开发语言·人工智能·python·langchain·知识图谱·rag·智能体
喵手1 小时前
Python爬虫实战:构建招聘会数据采集系统 - requests+lxml 实战企业名单爬取与智能分析!
爬虫·python·爬虫实战·requests·lxml·零基础python爬虫教学·招聘会数据采集
专注VB编程开发20年2 小时前
python图片验证码识别selenium爬虫--超级鹰实现自动登录,滑块,点击
数据库·python·mysql