自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合

1. 引言

简要介绍线性回归模型及其在机器学习中的应用。

2. 创建自定义数据集

通过生成一个简单的自定义数据集来模拟问题。可以使用numpy生成数据。

复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成自定义数据
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

3. 使用scikit-learn实现线性回归

使用LinearRegression类拟合数据并进行预测。

复制代码
from sklearn.linear_model import LinearRegression

# 初始化线性回归模型
lin_reg = LinearRegression()

# 拟合模型
lin_reg.fit(X, y)

# 预测
y_pred = lin_reg.predict(X)

# 输出模型参数
print(f"模型的截距:{lin_reg.intercept_}")
print(f"模型的系数:{lin_reg.coef_}")

4. 可视化拟合结果

绘制原始数据与回归线。

复制代码
plt.scatter(X, y, color='blue', label='数据点')
plt.plot(X, y_pred, color='red', label='拟合线')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()

5. 结论

使用scikit-learn进行线性回归拟合的步骤,并强调模型参数的含义。

相关推荐
梦幻精灵_cq27 分钟前
Linux.date格式化标识“制作”极简台历 vs Python.datetime.strftime格式化“精美”日历牌(时间工具依情境选择也是一种“智慧)
linux·python
ASS-ASH40 分钟前
视觉语言大模型Qwen3-VL-8B-Instruct概述
人工智能·python·llm·多模态·qwen·视觉语言模型·vlm
再__努力1点1 小时前
【77】积分图像:快速计算矩形区域和核心逻辑
开发语言·图像处理·人工智能·python·算法·计算机视觉
matlabgoodboy1 小时前
程序代做python代编程matlab代码设计plc深度学习java编写C++代写
python·深度学习·matlab
席万里1 小时前
基于Flask框架实现的一个在线考试系统
后端·python·flask
Algebraaaaa2 小时前
为什么线程阻塞要用.join而不是.wait
java·c++·python
起风了___2 小时前
Python 批量发邮件脚本:Excel 名单 + Jinja2 模板,带日志与防限流,163 邮箱实测可用
python·程序员
Mr.朱鹏2 小时前
大模型入门学习路径(Java开发者版)下
java·python·学习·微服务·langchain·大模型·llm
weixin_421585012 小时前
PYTHON中的索引操作
python
_Li.2 小时前
机器学习-特征选择
人工智能·python·机器学习