自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合

1. 引言

简要介绍线性回归模型及其在机器学习中的应用。

2. 创建自定义数据集

通过生成一个简单的自定义数据集来模拟问题。可以使用numpy生成数据。

复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成自定义数据
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

3. 使用scikit-learn实现线性回归

使用LinearRegression类拟合数据并进行预测。

复制代码
from sklearn.linear_model import LinearRegression

# 初始化线性回归模型
lin_reg = LinearRegression()

# 拟合模型
lin_reg.fit(X, y)

# 预测
y_pred = lin_reg.predict(X)

# 输出模型参数
print(f"模型的截距:{lin_reg.intercept_}")
print(f"模型的系数:{lin_reg.coef_}")

4. 可视化拟合结果

绘制原始数据与回归线。

复制代码
plt.scatter(X, y, color='blue', label='数据点')
plt.plot(X, y_pred, color='red', label='拟合线')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()

5. 结论

使用scikit-learn进行线性回归拟合的步骤,并强调模型参数的含义。

相关推荐
子午6 分钟前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Mr_Xuhhh11 分钟前
pytest -- 指定⽤例执⾏顺序
开发语言·python·pytest
tokepson14 分钟前
关于python更换永久镜像源
python·技术·记录
F_D_Z17 分钟前
【解决办法】网络训练报错AttributeError: module ‘jax.core‘ has no attribute ‘Shape‘.
开发语言·python·jax
前端伪大叔30 分钟前
第29篇:99% 的量化新手死在挂单上:Freqtrade 隐藏技能揭秘
后端·python·github
韩曙亮1 小时前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分
喵叔哟2 小时前
6.配置管理详解
后端·python·flask
曾经的三心草2 小时前
基于正倒排索引的Java文档搜索引擎3-实现Index类-实现搜索模块-实现DocSearcher类
java·python·搜索引擎
MOMO陌染3 小时前
Python 饼图入门:3 行代码展示数据占比
后端·python
vvoennvv3 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn