自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合

1. 引言

简要介绍线性回归模型及其在机器学习中的应用。

2. 创建自定义数据集

通过生成一个简单的自定义数据集来模拟问题。可以使用numpy生成数据。

复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成自定义数据
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)

3. 使用scikit-learn实现线性回归

使用LinearRegression类拟合数据并进行预测。

复制代码
from sklearn.linear_model import LinearRegression

# 初始化线性回归模型
lin_reg = LinearRegression()

# 拟合模型
lin_reg.fit(X, y)

# 预测
y_pred = lin_reg.predict(X)

# 输出模型参数
print(f"模型的截距:{lin_reg.intercept_}")
print(f"模型的系数:{lin_reg.coef_}")

4. 可视化拟合结果

绘制原始数据与回归线。

复制代码
plt.scatter(X, y, color='blue', label='数据点')
plt.plot(X, y_pred, color='red', label='拟合线')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()

5. 结论

使用scikit-learn进行线性回归拟合的步骤,并强调模型参数的含义。

相关推荐
kszlgy7 小时前
Day 52 神经网络调参指南
python
wrj的博客9 小时前
python环境安装
python·学习·环境配置
Pyeako9 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
摘星编程10 小时前
OpenHarmony环境下React Native:Geolocation地理围栏
python
充值修改昵称10 小时前
数据结构基础:从二叉树到多叉树数据结构进阶
数据结构·python·算法
q_354888515312 小时前
AI大模型:python新能源汽车推荐系统 协同过滤推荐算法 Echarts可视化 Django框架 大数据毕业设计(源码+文档)✅
大数据·人工智能·python·机器学习·信息可视化·汽车·推荐算法
Yeats_Liao12 小时前
开源生态资源:昇腾社区ModelZoo与DeepSeek的最佳实践路径
python·深度学习·神经网络·架构·开源
被星1砸昏头12 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
love530love13 小时前
彻底解决 ComfyUI Mixlab 插件 Whisper.available False 的报错
人工智能·windows·python·whisper·win_comfyui
不解风水14 小时前
《深度学习入门:基于 Python 的理论与实现》(斋藤康毅)
人工智能·python·深度学习