自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

python 复制代码
import tensorflow as tf
import numpy as np
from tensorflow.keras import Model
from tensorflow.keras import models

data = np.array([[-0.5, 7.7],
                 [1.8, 98.5],
                 [0.9, 57.8],
                 [0.4, 39.2],
                 [-1.4, -15.7],
                 [-1.4, -37.3],
                 [-1.8, -49.1],
                 [1.5, 75.6],
                 [0.4, 34.0],
                 [0.8, 62.3]])

x_data = data[:, 0]
y_data = data[:, 1]

x_train = tf.constant(x_data, dtype=tf.float32)
y_train = tf.constant(y_data, dtype=tf.float32)

dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(buffer_size=10)
dataset = dataset.batch(2)
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

def linear():
    input = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
    y = tf.keras.layers.Dense(1)(input)
    model1 = tf.keras.models.Model(inputs=input, outputs=y)
    return model1
model = linear()

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
model.compile(optimizer=optimizer, loss='mean_squared_error')

epoch = 500

history = model.fit(dataset, epochs=epoch)

model.save("./model.linear.h5")

loader_model=models.load_model("model.linear.h5")

input_data=np.array([1.8])
pre=loader_model.predict(input_data)

print(f"model result :{pre[0][0]:2.3f}")
相关推荐
CITY_OF_MO_GY几秒前
Spark-TTS:基于大模型的文本语音合成工具
人工智能·深度学习·语音识别
阿丢是丢心心7 分钟前
【从0到1搞懂大模型】神经网络的实现:数据策略、模型调优与评估体系(3)
人工智能·深度学习·神经网络
新智元7 分钟前
10²⁶参数,AGI 还需 70 年!清华人大预测届时 GPU 总价达 4000 万倍苹果市值
人工智能·openai
何大春14 分钟前
【对话推荐系统综述】Broadening the View: Demonstration-augmented Prompt Learning for CR
论文阅读·人工智能·深度学习·语言模型·prompt·论文笔记
WenGyyyL16 分钟前
使用OpenCV和MediaPipe库——增强现实特效(在手腕添加虚拟手表)
人工智能·opencv·计算机视觉·ar·cv·mediapipe
东临碣石8218 分钟前
【英伟达AI论文】多模态大型语言模型的高效长视频理解
人工智能·语言模型·自然语言处理
我去热饭19 分钟前
【完整记录】基于腾讯云HAI+DeepSeek快速开发法律咨询(小律师)辅助平台过程
人工智能
CoovallyAIHub20 分钟前
一码难求的Manus,又对计算机视觉产生冲击?复刻开源版已在路上!
人工智能·深度学习·计算机视觉
是理不是里_21 分钟前
人工智能里的深度学习指的是什么?
人工智能·深度学习