自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

python 复制代码
import tensorflow as tf
import numpy as np
from tensorflow.keras import Model
from tensorflow.keras import models

data = np.array([[-0.5, 7.7],
                 [1.8, 98.5],
                 [0.9, 57.8],
                 [0.4, 39.2],
                 [-1.4, -15.7],
                 [-1.4, -37.3],
                 [-1.8, -49.1],
                 [1.5, 75.6],
                 [0.4, 34.0],
                 [0.8, 62.3]])

x_data = data[:, 0]
y_data = data[:, 1]

x_train = tf.constant(x_data, dtype=tf.float32)
y_train = tf.constant(y_data, dtype=tf.float32)

dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(buffer_size=10)
dataset = dataset.batch(2)
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

def linear():
    input = tf.keras.layers.Input(shape=(1,), dtype=tf.float32)
    y = tf.keras.layers.Dense(1)(input)
    model1 = tf.keras.models.Model(inputs=input, outputs=y)
    return model1
model = linear()

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
model.compile(optimizer=optimizer, loss='mean_squared_error')

epoch = 500

history = model.fit(dataset, epochs=epoch)

model.save("./model.linear.h5")

loader_model=models.load_model("model.linear.h5")

input_data=np.array([1.8])
pre=loader_model.predict(input_data)

print(f"model result :{pre[0][0]:2.3f}")
相关推荐
一瞬祈望6 小时前
⭐ 深度学习入门体系(第 3 篇):反向传播到底怎么工作的?
人工智能·深度学习
居然JuRan6 小时前
终于有人把大模型讲明白了:LLM 从入门到精通全解析
人工智能
2501_924794906 小时前
告别报告撰写“时间黑洞”:华为云Flexus AI智能体,重塑企业研究与决策效率
人工智能·华为云
kkk_皮蛋7 小时前
“红色警报“后的反击:OpenAI 发布 GPT-5.2,AI 霸主之争白热化
人工智能·gpt·chatgpt
Felaim7 小时前
Sparse4D 时序输入和 Feature Queue 详解
人工智能·深度学习·自动驾驶
Ki13817 小时前
我的AI学习小结:从入门到放弃
人工智能·学习
迪三达7 小时前
智能体交易员 - AI-Trader
人工智能
dog2507 小时前
LLM(大语言模型)和高尔顿板
人工智能·语言模型·自然语言处理·高尔顿板
LaughingZhu7 小时前
Product Hunt 每日热榜 | 2025-12-13
人工智能·经验分享·神经网络·搜索引擎·产品运营