自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

在 TensorFlow 中实现逻辑回归、保存模型并加载模型进行预测的过程可以分为以下几个步骤:

  1. 准备数据:创建或加载你的自定义数据集。
  2. 构建逻辑回归模型
  3. 训练模型
  4. 保存模型
  5. 加载模型
  6. 使用加载的模型进行预测
python 复制代码
import tensorflow as tf
import numpy as np

# 1. 准备数据
# 示例:生成一些随机数据
np.random.seed(0)
X_train = np.random.rand(100, 3)  # 100个样本,每个样本3个特征
y_train = (np.sum(X_train, axis=1) > 1.5).astype(int)  # 简单的标签生成逻辑

X_test = np.random.rand(20, 3)  # 20个样本用于测试

# 2. 构建逻辑回归模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(1, activation='sigmoid', input_shape=(3,))
])

# 编译模型
model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])

# 3. 训练模型
model.fit(X_train, y_train, epochs=10, verbose=1)

# 4. 保存模型
model_save_path = 'logistic_regression_model.h5'
model.save(model_save_path)
print(f"Model saved to {model_save_path}")

# 5. 加载模型
loaded_model = tf.keras.models.load_model(model_save_path)

# 6. 使用加载的模型进行预测
predictions = loaded_model.predict(X_test)
predicted_classes = (predictions > 0.5).astype(int)

print("Predictions:")
print(predicted_classes)
相关推荐
IT_陈寒11 分钟前
Vite 5.0 性能优化实战:3 个关键配置让你的构建速度提升50%
前端·人工智能·后端
格林威2 小时前
MP偏振相机在工业视觉检测中的应用
人工智能·数码相机·opencv·计算机视觉·视觉检测·uv
用户5191495848452 小时前
在AI技术快速实现创意的时代,挖掘游戏开发框架新需求成为关键
人工智能·aigc
要做朋鱼燕3 小时前
【OpenCV】图像处理入门:从基础到实战技巧
图像处理·人工智能·opencv
湘-枫叶情缘3 小时前
突破“力工思维”:AI知识库如何破解单一生存心态困局
人工智能
TGITCIC5 小时前
能源AI天团:多智能体如何破解行业复杂任务
人工智能·能源·新能源·ai agent·大模型ai·ai能源·能源大模型
我爱计算机视觉6 小时前
ICCV 2025 | VideoOrion: 将视频中的物体动态编码进大语言模型,理解视频涨点10%以上!
人工智能·语言模型·自然语言处理
WWZZ20257 小时前
ORB_SLAM2原理及代码解析:Tracking::CreateInitialMapMonocular() 函数
人工智能·opencv·算法·计算机视觉·机器人·slam·感知
WWZZ20257 小时前
ORB_SLAM2原理及代码解析:Tracking::MonocularInitialization() 函数
人工智能·opencv·算法·计算机视觉·机器人·感知·单目相机
eve杭8 小时前
解锁数据主权与极致性能:AI本地部署的全面指南
大数据·人工智能·5g·ai