自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

在 TensorFlow 中实现逻辑回归、保存模型并加载模型进行预测的过程可以分为以下几个步骤:

  1. 准备数据:创建或加载你的自定义数据集。
  2. 构建逻辑回归模型
  3. 训练模型
  4. 保存模型
  5. 加载模型
  6. 使用加载的模型进行预测
python 复制代码
import tensorflow as tf
import numpy as np

# 1. 准备数据
# 示例:生成一些随机数据
np.random.seed(0)
X_train = np.random.rand(100, 3)  # 100个样本,每个样本3个特征
y_train = (np.sum(X_train, axis=1) > 1.5).astype(int)  # 简单的标签生成逻辑

X_test = np.random.rand(20, 3)  # 20个样本用于测试

# 2. 构建逻辑回归模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(1, activation='sigmoid', input_shape=(3,))
])

# 编译模型
model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])

# 3. 训练模型
model.fit(X_train, y_train, epochs=10, verbose=1)

# 4. 保存模型
model_save_path = 'logistic_regression_model.h5'
model.save(model_save_path)
print(f"Model saved to {model_save_path}")

# 5. 加载模型
loaded_model = tf.keras.models.load_model(model_save_path)

# 6. 使用加载的模型进行预测
predictions = loaded_model.predict(X_test)
predicted_classes = (predictions > 0.5).astype(int)

print("Predictions:")
print(predicted_classes)
相关推荐
白-胖-子1 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手2 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
静心问道3 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.03 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12014 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师4 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen4 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域4 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
Java樱木4 小时前
AI 编程工具 Trae 重要的升级。。。
人工智能
凪卄12135 小时前
图像预处理 二
人工智能·python·深度学习·计算机视觉·pycharm