自定义数据集 ,使用朴素贝叶斯对其进行分类

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

class1_points = np.array([[1.9, 1.2],
                          [1.5, 2.1],
                          [1.9, 0.5],
                          [1.5, 0.9],
                          [0.9, 1.2],
                          [1.1, 1.7],
                          [1.4, 1.1]])

class2_points = np.array([[3.2, 3.2],
                          [3.7, 2.9],
                          [3.2, 2.6],
                          [1.7, 3.3],
                          [3.4, 2.6],
                          [4.1, 2.3],
                          [3.0, 2.9]])

class3_points = np.array([[3.3, 1.2],
                          [3.8, 0.9],
                          [3.3, 0.6],
                          [2.8, 1.3],
                          [3.5, 0.6],
                          [4.2, 0.3],
                          [3.1, 0.9]])

X=np.concatenate((class1_points,class2_points,class3_points),axis=0)

Y=np.concatenate((np.zeros(len(class1_points)),np.ones(len(class1_points)),np.ones(len(class1_points))+1),axis=0)

print(Y)

prior_prob=[np.sum(Y==0)/len(Y),np.sum(Y==1)/len(Y),np.sum(Y==2)/len(Y)]

class_u=[np.mean(X[Y==0],axis=0),np.mean(X[Y==1],axis=0),np.mean(X[Y==2],axis=0)]

class_cov=[np.cov(X[Y==0],rowvar=False),np.cov(X[Y==1],rowvar=False),np.cov(X[Y==2],rowvar=False)]

def pdf(x, mean, cov):
    n = len(mean)
    coff = 1 / (2 * np.pi) ** (n / 2) * np.sqrt(np.linalg.det(cov))
    exponent = np.exp(-(1 / 2) * np.dot(np.dot((x - mean).T, np.linalg.inv(cov)), (x - mean)))
    return coff * exponent

xx, yy = np.meshgrid(np.arange(0, 5, 0.05), np.arange(0, 4, 0.05))

grid_points = np.c_[xx.ravel(), yy.ravel()]

grid_label = []

for point in grid_points:
    poster_prob = []
    for i in range(3):
        likelihood = pdf(point, class_u[i], class_cov[i])
        poster_prob.append(prior_prob[i] * likelihood)
    pre_class = np.argmax(poster_prob)
    grid_label.append(pre_class)

grid_label = np.array(grid_label)

pre_grid_label = grid_label.reshape(xx.shape)

plt.scatter(class1_points[:,0],class1_points[:,1],c="blue",label="class 1")
plt.scatter(class2_points[:,0],class2_points[:,1],c="red",label="class 2")
plt.scatter(class3_points[:,0],class3_points[:,1],c="yellow",label="class 3")

plt.legend()

contour=plt.contour(xx,yy,pre_grid_label,colors='green')

plt.show()
相关推荐
肥猪猪爸1 小时前
BP神经网络对时序数据进行分类
人工智能·深度学习·神经网络·算法·机器学习·分类·时序数据
Keep learning!1 小时前
深度学习入门代码详细注释-ResNet18分类蚂蚁蜜蜂
人工智能·深度学习·分类
Dxy12393102162 小时前
Python PDFplumber详解:从入门到精通的PDF处理指南
开发语言·python·pdf
在努力的韩小豪4 小时前
如何从0开始构建自己的第一个AI应用?(Prompt工程、Agent自定义、Tuning)
人工智能·python·llm·prompt·agent·ai应用·mcp
Otaku love travel5 小时前
实施运维文档
运维·windows·python
测试老哥5 小时前
软件测试之单元测试
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
presenttttt6 小时前
用Python和OpenCV从零搭建一个完整的双目视觉系统(六 最终篇)
开发语言·python·opencv·计算机视觉
测试19987 小时前
软件测试之压力测试总结
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·压力测试
李昊哲小课8 小时前
销售数据可视化分析项目
python·信息可视化·数据分析·matplotlib·数据可视化·seaborn
烛阴8 小时前
带参数的Python装饰器原来这么简单,5分钟彻底掌握!
前端·python