自定义数据集,使用scikit-learn 中K均值包 进行聚类

python 复制代码
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import numpy as np

class1_points = np.array([[1.9, 1.2],
                          [1.5, 2.1],
                          [1.9, 0.5],
                          [1.5, 0.9],
                          [0.9, 1.2],
                          [1.1, 1.7],
                          [1.4, 1.1]])

class2_points = np.array([[-1.9, 1.2],
                          [-1.5, 2.1],
                          [-1.9, 0.5],
                          [-1.5, 0.9],
                          [-0.9, 1.2],
                          [-1.1, 1.7],
                          [-1.4, 1.1]])

class3_points = np.array([[1.9, -1.2],
                          [1.5, -2.1],
                          [1.9, -0.5],
                          [1.5, -0.9],
                          [0.9, -1.2],
                          [1.1, -1.7],
                          [1.4, -1.1]])

class4_points = np.array([[-1.9, -1.2],
                          [-1.5, -2.1],
                          [-1.9, -0.5],
                          [-1.5, -0.9],
                          [-0.9, -1.2],
                          [-1.1, -1.7],
                          [-1.4, -1.1]])

data = np.concatenate((class1_points, class2_points, class3_points, class4_points))

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))

k = 4

ax1.scatter(data[:, 0], data[:, 1], s=50)
ax1.plot()

km = KMeans(n_clusters=k,max_iter=30)
km.fit(data)
centers = km.cluster_centers_
y_kmeans = km.predict(data)
print(y_kmeans)

for i in range(k):
    cluster_points = data[y_kmeans == i]
    centroid = centers[i]
    for cluster_points in cluster_points:
        ax2.plot([cluster_points[0], centroid[0]],[cluster_points[1], centroid[1]],'k--')

ax2.scatter(data[:, 0], data[:, 1], c = y_kmeans, s=50)
ax2.scatter(centers[:, 0], centers[:, 1], c='black', s=100, alpha=0.5)

plt.show()
相关推荐
百锦再1 天前
一文掌握Flask:从基础使用到高级应用
后端·python·django·flask·virtualenv·scikit-learn·pygame
Thomas21433 天前
MinMaxScaler Scikit-learn sparkml 稀疏向量
人工智能·机器学习·scikit-learn
jie*3 天前
小杰机器学习(seven)——贝叶斯分类
人工智能·python·深度学习·神经网络·机器学习·分类·scikit-learn
xchenhao3 天前
支持向量机 SVM 预测人脸数据集时数据是否标准化的对比差异
算法·机器学习·支持向量机·scikit-learn·svm·标准化
合作小小程序员小小店12 天前
机器学习介绍
人工智能·python·机器学习·scikit-learn·安全威胁分析
xchenhao12 天前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm
xchenhao12 天前
Scikit-learn 对加州房价数据集(回归任务)进行全面分析
python·决策树·机器学习·回归·数据集·scikit-learn·knn
TwoAI12 天前
Scikit-learn 机器学习:构建、训练与评估预测模型
python·机器学习·scikit-learn
java1234_小锋13 天前
Scikit-learn Python机器学习 - 分类算法 - 朴素贝叶斯
python·机器学习·scikit-learn
TwoAI13 天前
Scikit-learn:从零开始构建你的第一个机器学习模型
python·机器学习·scikit-learn