3D gpr仿真

我总是认为学生给我说的3D 仿真有问题,多次确认后,确实可以。

通过AI生成结果。

1. 模拟空间的定义

在输入文件中,以下代码定义了三维模拟空间:

复制代码
#domain: 0.5 0.5 0.5
#dx_dy_dz: 0.002 0.002 0.002
  • domain: 0.5 0.5 0.5 表示模拟空间的范围是 0.5 m×0.5 m×0.5 m0.5m×0.5m×0.5m,这是一个三维空间。

  • dx_dy_dz: 0.002 0.002 0.002 表示在 𝑥x、𝑦y、𝑧z 三个方向上的网格分辨率均为 0.002 米,这是三维网格划分。


2. 几何结构的定义

在输入文件中,以下代码定义了三维几何结构:

复制代码
#box: 0 0 0 0.5 0.5 0.01 soil
#box: 0.1 0.1 0.01 0.15 0.15 0.05 metal
  • box 命令用于定义长方体,其参数为 (𝑥1,𝑦1,𝑧1,𝑥2,𝑦2,𝑧2)(x1​,y1​,z1​,x2​,y2​,z2​),分别表示长方体的两个对角顶点的坐标。

  • 例如,box: 0 0 0 0.5 0.5 0.01 soil 定义了一个从 (0,0,0)(0,0,0) 到 (0.5,0.5,0.01)(0.5,0.5,0.01) 的长方体,表示土壤层。

  • 这种三维几何结构的定义是 3D 仿真的核心。


3. 天线的定义

在输入文件中,以下代码定义了三维空间中的天线位置:

复制代码
#hertzian_dipole: z 0.05 0.05 0.02 0
#rx: 0.05 0.05 0.02
#rx: 0.1 0.1 0.02
#rx: 0.15 0.15 0.02
  • hertzian_dipole 定义了发射天线的位置和极化方向。例如,z 0.05 0.05 0.02 0 表示天线位于 (0.05,0.05,0.02)(0.05,0.05,0.02),沿 𝑧z 方向极化。

  • rx 定义了接收天线的位置。例如,rx: 0.05 0.05 0.02 表示接收天线位于 (0.05,0.05,0.02)(0.05,0.05,0.02)。

  • 天线的三维位置分布是 3D 仿真的重要特征。


4. 输出文件的维度

在输入文件中,以下代码定义了三维输出:

#geometry_view: 0 0 0 0.5 0.5 0.5 0.002 0.002 0.002 array_simulation n

  • geometry_view 用于输出整个模拟空间的几何信息。

  • 参数 (0,0,0,0.5,0.5,0.5)(0,0,0,0.5,0.5,0.5) 表示输出整个三维空间的数据。

  • 输出的文件(如 .h5 文件)将包含三维空间的电磁场分布。


5. 结果的可视化

在分析结果时,以下代码读取三维数据:

with h5py.File(filename, 'r') as f: data = f['rxs']['rx1']['Ez'][()]

  • 虽然这里只绘制了一个接收天线的信号,但实际输出文件(如 .h5 文件)中可能包含多个接收天线的数据,这些数据分布在三维空间中。

  • 如果需要完全的三维可视化,可以使用工具(如 Paraview)加载 .h5 文件,查看整个三维空间的电磁场分布。


总结

上述代码通过以下方面体现了 3D GPR 仿真:

  1. 三维模拟空间 的定义(domaindx_dy_dz)。

  2. 三维几何结构 的定义(box 命令)。

  3. 三维天线分布 的定义(hertzian_dipolerx)。

  4. 三维输出数据 的生成(geometry_view.h5 文件)。

    3D_array_simulation.in

    定义模拟空间

    #domain: 0.5 0.5 0.5
    #dx_dy_dz: 0.002 0.002 0.002
    #time_window: 5e-9

    定义材料

    #material: 6 0 1 0 free_space
    #material: 3 0 1 0 soil_er=4 sigma=0.01

    定义几何结构

    #box: 0 0 0 0.5 0.5 0.01 soil
    #box: 0.1 0.1 0.01 0.15 0.15 0.05 metal

    定义发射和接收天线

    #hertzian_dipole: z 0.05 0.05 0.02 0
    #rx: 0.05 0.05 0.02
    #rx: 0.1 0.1 0.02
    #rx: 0.15 0.15 0.02

    定义输出

    #geometry_view: 0 0 0 0.5 0.5 0.5 0.002 0.002 0.002 array_simulation n

    python -m gprMax 3D_array_simulation.in

    import h5py
    import numpy as np
    import matplotlib.pyplot as plt

    读取输出文件

    filename = 'array_simulation.h5'
    with h5py.File(filename, 'r') as f:
    data = f['rxs']['rx1']['Ez'][()]

    绘制波形

    plt.plot(data)
    plt.xlabel('Time steps')
    plt.ylabel('Amplitude')
    plt.title('Received Signal')
    plt.show()

相关推荐
爱凤的小光7 小时前
图漾相机——Sample_V2示例程序(待补充)
3d·图漾相机
那就举个栗子!10 小时前
3DGS-to-PC:3DGS模型一键丝滑转 点云 or Mesh 【Ubuntu 20.04】【2025最新版!!】
3d·三维重建
懒羊羊我小弟10 小时前
使用 ECharts GL 实现交互式 3D 饼图:技术解析与实践
前端·vue.js·3d·前端框架·echarts
龙湾开发17 小时前
计算机图形学编程(使用OpenGL和C++)(第2版)学习笔记 09.天空和背景
c++·笔记·学习·3d·图形渲染
施努卡机器视觉1 天前
Alpha3DCS公差分析系统_国产替代的3D精度管控方案-SNK施努卡
3d
那年一路北1 天前
多视图密集对应学习:细粒度3D分割的自监督革命
3d
sunbyte1 天前
Three.js + React 实战系列 - 职业经历区实现解析 Experience 组件✨(互动动作 + 3D 角色 + 点击切换动画)
javascript·react.js·3d
球球和皮皮1 天前
Babylon.js学习之路《一、初识 Babylon.js:什么是 3D 开发与 WebGL 的完美结合?》
javascript·3d·前端框架·ar·vr
前端小崔2 天前
从零开始学习three.js(15):一文详解three.js中的纹理映射UV
前端·javascript·学习·3d·webgl·数据可视化·uv
狂奔solar2 天前
TAPIP3D:持久3D几何中跟踪任意点
3d