深度学习中的梯度相关问题

1.求偏导的意义、作用?为什么要求偏导?

偏导数帮助我们理解函数在某一个变量变化时,函数值如何变化,同时保持其他变量不变。在机器学习中,尤其是训练神经网络时,我们通过求偏导数来确定如何调整模型参数以最小化损失函数。这相当于找到损失景观中每个参数的斜率,指导我们如何调整参数以更快地达到最小损失。这对于像梯度下降这样的优化算法至关重要。

2.加法门、乘法门、激活函数门是什么?

这些是计算图中的操作:

  • 加法门 是加法操作,用于将两个或多个值相加,常见于神经网络中组合加权输入。

  • 乘法门 是乘法操作,用于将输入与权重相乘。

  • 激活函数门 是应用激活函数(如ReLU或 sigmoid),引入非线性,帮助网络学习复杂模式。

3.常见的损失函数框架都会封装好,反向传播求导先从损失函数开始?

在TensorFlow或PyTorch等框架中,反向传播从损失函数开始。框架自动计算从损失到各权重的梯度,极大简化了开发过程。

回归问题:

4.MSE:求导损失函数后,其实是求了每条样本残差的平均值?

对于均方误差(MSE),损失函数的导数相对于预测值,实际上是每条样本残差(预测值与真实值之差)的平均值。这符合MSE是 squared differences的平均值,其导数直接与残差相关。

分类问题:

5.对于MSE和交叉熵损失函数,求导(偏导)后得到的结果一样,是否意味着对于回归和分类两大类问题,除了输入的数据X的类型不一样(回归--连续型;分类--离散型),在做反向传播时的计算结构大体相近?

只能说梯度的公式一样,但是数据的类型和计算图中的网络结构、超参数什么的不太近似,如果很接近就没有对问题的区分度了

参考来源:【官方】百战程序员_IT在线教育培训机构_体系课程在线学习平台

相关推荐
T风呤3 分钟前
位深和位宽的区别
图像处理·人工智能·计算机视觉
liruiqiang0521 分钟前
机器学习 - 进一步理解最大似然估计和高斯分布的关系
人工智能·机器学习·概率论
我很好请走开谢谢23 分钟前
大语言模型prompt -Template
人工智能
bylander29 分钟前
【AI学习】LLM的发展方向
人工智能·gpt·学习
North_D30 分钟前
ML.NET库学习005:基于机器学习的客户细分实现与解析
人工智能·深度学习·神经网络·目标检测·机器学习·数据挖掘·mlnet
老六哥_AI助理指南34 分钟前
嵌入式AI革命:DeepSeek开源如何终结GPU霸权,开启单片机智能新时代?
人工智能·单片机·开源
一 铭1 小时前
Onyx(DAnswer)总体实现架构
人工智能·语言模型·大模型·llm
小高Baby@1 小时前
Deepseek
人工智能·笔记
Amarantine、沐风倩✨1 小时前
区块链技术未来发展趋势(人工智能和物联网领域)
人工智能·物联网·区块链
LeeZhao@1 小时前
【AIGC魔童】DeepSeek v3提示词Prompt书写技巧
人工智能·语言模型·自然语言处理·面试·prompt·aigc