深度学习中的梯度相关问题

1.求偏导的意义、作用?为什么要求偏导?

偏导数帮助我们理解函数在某一个变量变化时,函数值如何变化,同时保持其他变量不变。在机器学习中,尤其是训练神经网络时,我们通过求偏导数来确定如何调整模型参数以最小化损失函数。这相当于找到损失景观中每个参数的斜率,指导我们如何调整参数以更快地达到最小损失。这对于像梯度下降这样的优化算法至关重要。

2.加法门、乘法门、激活函数门是什么?

这些是计算图中的操作:

  • 加法门 是加法操作,用于将两个或多个值相加,常见于神经网络中组合加权输入。

  • 乘法门 是乘法操作,用于将输入与权重相乘。

  • 激活函数门 是应用激活函数(如ReLU或 sigmoid),引入非线性,帮助网络学习复杂模式。

3.常见的损失函数框架都会封装好,反向传播求导先从损失函数开始?

在TensorFlow或PyTorch等框架中,反向传播从损失函数开始。框架自动计算从损失到各权重的梯度,极大简化了开发过程。

回归问题:

4.MSE:求导损失函数后,其实是求了每条样本残差的平均值?

对于均方误差(MSE),损失函数的导数相对于预测值,实际上是每条样本残差(预测值与真实值之差)的平均值。这符合MSE是 squared differences的平均值,其导数直接与残差相关。

分类问题:

5.对于MSE和交叉熵损失函数,求导(偏导)后得到的结果一样,是否意味着对于回归和分类两大类问题,除了输入的数据X的类型不一样(回归--连续型;分类--离散型),在做反向传播时的计算结构大体相近?

只能说梯度的公式一样,但是数据的类型和计算图中的网络结构、超参数什么的不太近似,如果很接近就没有对问题的区分度了

参考来源:【官方】百战程序员_IT在线教育培训机构_体系课程在线学习平台

相关推荐
zhaoyi_he6 分钟前
多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
人工智能·重构
葫三生1 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
m0_751336392 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk5 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程5 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li6 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝6 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion8 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周8 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享9 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉