计算机视觉与图像处理的关系

实际上,图像识别尤其是人脸识别的商业应用已经比较成熟了,尤其是静态图像的识别技术,其准确率已经很高了。然而,在自动驾驶的实际场景中,除了动态的图像识别技术,还要求对路况以及物体运动估计的预判等等,相比图像识别有更大的挑战和难度。另外,医疗影像方向近年来也被深度学习以及计算机视觉的热门带动,成为学术以及产业界有很大发展潜力的一个方向。

图像处理(Image Processing)

侧重于图像像素级别的处理,通常的处理手段是将工业相机、摄像机以及扫描仪等设备经过拍摄的图像存储在一个大的二维数组中,该数组中的元素称谓像素,其值为灰度值。

图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。在深度学习以及 GPU 广泛应用之前的一段时间,图像处理中的核心算法是提出有效的二维结构描述符,通过描述符的不同来提取图像中不同的特征,如 2D 傅里叶描述符,2D Zernike 描述符等等。而深度学习则避免了描述符创造这一最为艰难的过程,直接利用最原始的二维数组对图像进行特征识别。

因此,深度学习大大加速了图像处理研究的发展。目前,基于深度学习的图像处理是计算机视觉中一大热点。

相关推荐
AI营销实验室7 分钟前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛1121 分钟前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI35 分钟前
RAG系列(一) 架构基础与原理
人工智能·架构
北邮刘老师1 小时前
【智能体互联协议解析】北邮ACPs协议和代码与智能体互联AIP标准的关系
人工智能·大模型·智能体·智能体互联网
亚马逊云开发者1 小时前
使用Amazon Q Developer CLI快速构建市场分析智能体
人工智能
Coding茶水间1 小时前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
Rose sait1 小时前
【环境配置】Linux配置虚拟环境pytorch
linux·人工智能·python
福客AI智能客服1 小时前
从被动响应到主动赋能:家具行业客服机器人的革新路径
大数据·人工智能
司南OpenCompass2 小时前
衡量AI真实科研能力!司南科学智能评测上线
人工智能·多模态模型·大模型评测·司南评测
罗宇超MS2 小时前
如何看待企业自建AI知识库?
人工智能·alm