计算机视觉核心任务

1. 计算机视频重要分类

计算机视觉的重要任务可以大致分为以下几类:

1. 图像分类(Image Classification)

识别图像属于哪个类别,例如猫、狗、汽车等。

  • 应用场景:物品识别、人脸识别、医疗影像分类。
  • 代表模型:ResNet、EfficientNet、ViT(Vision Transformer)。

2. 目标检测(Object Detection)

识别图像中目标的位置(边界框)及类别。

  • 应用场景:自动驾驶、安防监控、人流统计。
  • 代表模型:Faster R-CNN、YOLO(You Only Look Once)、SSD(Single Shot MultiBox Detector)。

3. 语义分割(Semantic Segmentation)

对图像中的每个像素进行分类,区分不同物体类别。

  • 应用场景:医学影像分析(病灶检测)、自动驾驶(车道识别)。
  • 代表模型:U-Net、DeepLabV3+、SegFormer。

4. 实例分割(Instance Segmentation)

类似语义分割,但能够区分同类别不同实例的像素区域。

  • 应用场景:自动驾驶(车辆、人等实例级分割)、工业检测。
  • 代表模型:Mask R-CNN、YOLACT、CondInst。

5. 姿态估计(Pose Estimation)

检测人体、动物或物体的关键点(关节点、骨架等)。

  • 应用场景:行为分析、运动捕捉、AR(增强现实)。
  • 代表模型:OpenPose、HRNet、DETR。

6. 目标跟踪(Object Tracking)

在视频序列中跟踪目标的轨迹。

  • 应用场景:无人机跟踪、视频监控、运动分析。
  • 代表模型:SiamRPN、SORT、DeepSORT。

7. 光流估计(Optical Flow Estimation)

计算图像像素点的运动矢量场,用于运动分析。

  • 应用场景:视频稳定、动作检测、自动驾驶。
  • 代表模型:RAFT、PWC-Net、FlowNet2.0。

8. 三维重建(3D Reconstruction)

从 2D 图像或点云恢复 3D 结构。

  • 应用场景:SLAM(同时定位与建图)、AR/VR、医学成像。
  • 代表模型:Colmap、NeRF(神经辐射场)、MonoDepth。

9. 超分辨率(Super Resolution)

提升图像分辨率,使低质量图像变得清晰。

  • 应用场景:医学影像增强、老照片修复、视频增强。
  • 代表模型:ESRGAN、SRGAN、SwinIR。

10. 图像去噪(Image Denoising)

去除图像中的噪声,提高清晰度。

  • 应用场景:遥感影像处理、夜间摄影增强。
  • 代表模型:DnCNN、BM3D、Noise2Noise。

11. 生成对抗网络(GANs)

生成高质量的图像、风格迁移等。

  • 应用场景:AI 绘画、图像风格化、深度伪造(Deepfake)。
  • 代表模型:StyleGAN、CycleGAN、BigGAN。

12. 图像/视频理解(Image/Video Understanding)

对图像或视频的内容进行高层次分析。

  • 应用场景:智能监控、自动驾驶、视频摘要。
  • 代表模型:CLIP、SlowFast、TimeSformer。

2. 图像分类 vs. 目标检测

对比维度 图像分类(Image Classification) 目标检测(Object Detection)
任务定义 识别整幅图像的类别 识别图像中所有目标的位置和类别
输出结果 单个类别标签 多个类别标签 + 目标的边界框(Bounding Box)
输入数据 单张图像 单张图像(含多个目标)
难度 相对较低 较高,需要额外的目标定位
计算复杂度 高(涉及回归和分类任务)
核心技术 卷积神经网络(CNN)、ViT CNN + 回归网络(YOLO、Faster R-CNN 等)
核心特点 * 仅关注全局特征,不关心目标位置 * 计算量较小,适合移动端和实时应用 * 需要定位多个目标 * 计算复杂度高,对硬件要求高
主要方法 * 经典CNN架构(AlexNet、VGG、ResNet) * 轻量级模型(MobileNet、EfficientNet) * 视觉Transformer(ViT、Swin Transformer) * 单阶段(One-Stage):YOLO、SSD(速度快) * 两阶段(Two-Stage):Faster R-CNN(精度高) * 基于Transformer:DETR(无需Anchor,端到端)
应用场景 图像检索、人脸识别、医学影像分类 自动驾驶、人群统计、工业检测

3.目标检测与图像分割、语义分割、实例分割

|----------|----------------------------|---------------------------------|---------------------------------|
| 对比维度 | 目标检测(Object Detection) | 语义分割(Semantic Segmentation) | 实例分割(Instance Segmentation) |
| 任务定义 | 识别目标并画出边界框(Bounding Box) | 识别每个像素的类别 | 识别每个像素的类别,并区分同类别的不同实例 |
| 输出结果 | 目标类别 + 目标位置(矩形框) | 每个像素的类别掩码(Mask) | 每个像素的类别掩码 + 不同实例的分割 |
| 关注点 | 物体的整体位置 | 物体的精确边界 | 物体的精确边界 + 实例区分 |
| 计算复杂度 | 中 | 高 | 更高 |
| 模型架构 | YOLO、Faster R-CNN、SSD | FCN、DeepLabV3+、U-Net | Mask R-CNN、YOLACT、CondInst |
| 适用场景 | 自动驾驶、监控、人脸检测 | 医学影像、卫星遥感、环境分析 | 自动驾驶、实例级目标识别、工业检测 |

4. 目标检测与目标跟踪

对比维度 目标检测(Object Detection) 目标跟踪(Object Tracking)
任务定义 在图像中识别目标并定位(Bounding Box) 在视频中跟踪同一目标的运动轨迹
输入数据 单张图像或视频帧 连续的视频帧
输出结果 目标类别 + 目标边界框 目标 ID + 目标边界框(跨帧一致)
核心技术 CNN、区域提议(RPN)、Anchor 目标检测 + 相关性计算(如光流、匹配)
计算复杂度 较高(每帧都需重新检测) 低(仅在关键帧检测,其他帧追踪)
适用场景 自动驾驶、安防监控、工业检测 运动分析、无人机跟踪、视频监控
代表模型 YOLO、Faster R-CNN、SSD SORT、DeepSORT、SiamRPN、ByteTrack
相关推荐
智驱力人工智能12 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
工程师老罗12 小时前
YOLOv1 核心结构解析
yolo
Lun3866buzha12 小时前
YOLOv10-BiFPN融合:危险物体检测与识别的革新方案,从模型架构到实战部署全解析
yolo
Katecat9966313 小时前
YOLOv8-MambaOut在电子元器件缺陷检测中的应用与实践_1
yolo
工程师老罗14 小时前
YOLOv1 核心知识点笔记
笔记·yolo
工程师老罗19 小时前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
学习3人组1 天前
YOLO模型集成到Label Studio的MODEL服务
yolo
孤狼warrior1 天前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
水中加点糖1 天前
小白都能看懂的——车牌检测与识别(最新版YOLO26快速入门)
人工智能·yolo·目标检测·计算机视觉·ai·车牌识别·lprnet
前端摸鱼匠2 天前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测