变分边界详解

起因

当时看VAE论文时有这么一段,但是看完直接一头雾水,这都那跟哪,第一个公式咋做的变换就变出那么一堆。网上搜了很多博客都语焉不详,只好自己来写一篇,希望能解答后来人的疑惑。

公式1

参考文章:证据下界(ELBO)、EM算法、变分推断、变分自编码器(VAE)和混合高斯模型(GMM)

解释一下,我们之前都是用MLE计算损失, l o g p ( x ∣ θ ) logp(x|\theta) logp(x∣θ)和 l o g p θ ( x ) logp_{\theta}(x) logpθ(x)是一样的,数分和统计学写法习惯不同。第一种理解同上,可以结合VAE模型理解他的解释,这个解释比较抽象。

第二种理解是以信息论的角度,信息熵= E [ − l o g p θ ( x ) ] E[-logp_{\theta}(x)] E[−logpθ(x)]。信息熵越小,说明系统越稳定,不确定程度越低。
L [ θ ] = a r g m i n θ E [ − l o g p θ ( x ) ] = a r g m a x θ E [ l o g p θ ( x ) ] L[\theta]=argmin_\theta E[-logp_{\theta}(x)]=argmax_\theta E[logp_{\theta}(x)] L[θ]=argminθE[−logpθ(x)]=argmaxθE[logpθ(x)]

推导公式1:(引入一个隐变量z,z可以想象成VAE编码器计算出来的均值和方差的随机变量,对应分布q(z))
l o g p θ ( x ) = l o g p θ ( x , z ) − l o g p θ ( z ∣ x ) = l o g p θ ( x , z ) q ( z ) − l o g p θ ( z ∣ x ) q ( z ) logp_\theta(x) = logp_\theta(x,z) - logp_\theta(z|x)= log\frac{p_\theta(x,z)}{q(z)} - log\frac{p_\theta(z|x)}{q(z)} logpθ(x)=logpθ(x,z)−logpθ(z∣x)=logq(z)pθ(x,z)−logq(z)pθ(z∣x)

方程两边同时求期望:
具体推到过程看大佬的,白板机器学习

公式2

证明如下:

DK >= 0,所以可证公式2。

DK >= 0证明结果如下,写的不清楚请参考其他博客,证明很多,实在懒得敲了见谅。

公式3

计算结果如下,写的不清楚请参考其他博客,证明很多,实在懒得敲了见谅。

相关推荐
go546315846544 分钟前
基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究
图像处理·人工智能·深度学习·神经网络·算法
aramae1 小时前
大话数据结构之<队列>
c语言·开发语言·数据结构·算法
大锦终1 小时前
【算法】前缀和经典例题
算法·leetcode
想变成树袋熊1 小时前
【自用】NLP算法面经(6)
人工智能·算法·自然语言处理
cccc来财2 小时前
Java实现大根堆与小根堆详解
数据结构·算法·leetcode
Coovally AI模型快速验证3 小时前
数据集分享 | 智慧农业实战数据集精选
人工智能·算法·目标检测·机器学习·计算机视觉·目标跟踪·无人机
墨尘游子3 小时前
目标导向的强化学习:问题定义与 HER 算法详解—强化学习(19)
人工智能·python·算法
恣艺3 小时前
LeetCode 854:相似度为 K 的字符串
android·算法·leetcode
予早3 小时前
《代码随想录》刷题记录
算法
满分观察网友z4 小时前
别总想着排序!我在数据看板中悟出的O(N)求第三大数神技(414. 第三大的数)
算法