变分边界详解

起因

当时看VAE论文时有这么一段,但是看完直接一头雾水,这都那跟哪,第一个公式咋做的变换就变出那么一堆。网上搜了很多博客都语焉不详,只好自己来写一篇,希望能解答后来人的疑惑。

公式1

参考文章:证据下界(ELBO)、EM算法、变分推断、变分自编码器(VAE)和混合高斯模型(GMM)

解释一下,我们之前都是用MLE计算损失, l o g p ( x ∣ θ ) logp(x|\theta) logp(x∣θ)和 l o g p θ ( x ) logp_{\theta}(x) logpθ(x)是一样的,数分和统计学写法习惯不同。第一种理解同上,可以结合VAE模型理解他的解释,这个解释比较抽象。

第二种理解是以信息论的角度,信息熵= E [ − l o g p θ ( x ) ] E[-logp_{\theta}(x)] E[−logpθ(x)]。信息熵越小,说明系统越稳定,不确定程度越低。
L [ θ ] = a r g m i n θ E [ − l o g p θ ( x ) ] = a r g m a x θ E [ l o g p θ ( x ) ] L[\theta]=argmin_\theta E[-logp_{\theta}(x)]=argmax_\theta E[logp_{\theta}(x)] L[θ]=argminθE[−logpθ(x)]=argmaxθE[logpθ(x)]

推导公式1:(引入一个隐变量z,z可以想象成VAE编码器计算出来的均值和方差的随机变量,对应分布q(z))
l o g p θ ( x ) = l o g p θ ( x , z ) − l o g p θ ( z ∣ x ) = l o g p θ ( x , z ) q ( z ) − l o g p θ ( z ∣ x ) q ( z ) logp_\theta(x) = logp_\theta(x,z) - logp_\theta(z|x)= log\frac{p_\theta(x,z)}{q(z)} - log\frac{p_\theta(z|x)}{q(z)} logpθ(x)=logpθ(x,z)−logpθ(z∣x)=logq(z)pθ(x,z)−logq(z)pθ(z∣x)

方程两边同时求期望:
具体推到过程看大佬的,白板机器学习

公式2

证明如下:

DK >= 0,所以可证公式2。

DK >= 0证明结果如下,写的不清楚请参考其他博客,证明很多,实在懒得敲了见谅。

公式3

计算结果如下,写的不清楚请参考其他博客,证明很多,实在懒得敲了见谅。

相关推荐
全栈凯哥5 分钟前
Java详解LeetCode 热题 100(17):LeetCode 41. 缺失的第一个正数(First Missing Positive)详解
java·算法·leetcode
ai.Neo33 分钟前
牛客网NC22157:牛牛学数列2
数据结构·c++·算法
Nobkins1 小时前
2023CCPC河南省赛暨河南邀请赛个人补题ABEFGHK
开发语言·数据结构·c++·算法·图论
王RuaRua1 小时前
[数据结构]7. 堆-Heap
c语言·数据结构·算法·链表
朱剑君2 小时前
第八天——贪心算法——队列重构问题
算法·贪心算法·重构
仙人掌_lz2 小时前
深度理解用于多智能体强化学习的单调价值函数分解QMIX算法:基于python从零实现
python·算法·强化学习·rl·价值函数
riri19192 小时前
算法分析:蛮力法
数据结构·算法
Christo32 小时前
关于在深度聚类中Representation Collapse现象
人工智能·深度学习·算法·机器学习·数据挖掘·embedding·聚类
摄殓永恒2 小时前
猫咪几岁
数据结构·c++·算法
机器学习之心2 小时前
分类预测 | Matlab实现ABC-Transformer人工蜂群算法优化编码器多特征分类预测/故障诊断Matlab实现
算法·matlab·分类