Retrieval-Augmented Generation for LargeLanguage Models: A Survey

标题:Retrieval-Augmented Generation for Large Language Models: A Survey

作者:Yunfan Gaoa , Yun Xiongb , Xinyu Gaob , Kangxiang Jiab , Jinliu Panb , Yuxi Bic , Yi Daia , Jiawei Suna , Meng Wangc , and Haofen Wang

  1. By referencing external knowledge, RAG effectively reduces the problem of generating factually incorrect content. Its integration into LLMs has resulted in widespread adoption, establishing RAG as a key technology in advancing chatbots and enhancing the suitability of LLMs for real-world applications

  2. The RAG research paradigm is continuously evolving, and we categorize it into three stages: Naive RAG, Advanced RAG, and Modular RAG

  3. The Naive RAG:

Indexing starts with the cleaning and extraction of raw data

Retrieval. Upon receipt of a user query, the RAG system employs the same encoding model utilized during the indexing phase to transform the query into a vector representation.

Generation. The posed query and selected documents are synthesized into a coherent prompt to which a large language model is tasked with formulating a response.

Advanced RAG introduces specific improvements to overcome the limitations of Naive RAG. Focusing on enhancing retrieval quality, it employs pre-retrieval and post-retrieval strategies.

Pre-retrieval process. In this stage, the primary focus is on optimizing the indexing structure and the original query. The goal of optimizing indexing is to enhance the quality of the content being indexed.

Post-Retrieval Process. Once relevant context is retrieved, it's crucial to integrate it effectively with the query

  1. Innovations such as the Rewrite-Retrieve-Read [7]model leverage the LLM's capabilities to refine retrieval queries through a rewriting module and a LM-feedback mechanism to update rewriting model

  2. RAG is often compared with Fine-tuning (FT) and prompt engineering. Each method has distinct characteristics as illustrated in Figure 4.

  3. In the context of RAG, it is crucial to efficiently retrieve relevant documents from the data source. There are several key issues involved, such as the retrieval source, retrieval granularity, pre-processing of the retrieval, and selection of the corresponding embedding model.

相关推荐
播播资源1 小时前
ChatGPT付费创作系统V3.1.3独立版 WEB端+H5端+小程序端 (DeepSeek高级通道+推理输出格式)安装教程
前端·ai·chatgpt·ai作画·小程序·deepseek·deepseek-v3
南风过闲庭2 小时前
操作系统研究
大数据·人工智能·科技·学习·ai·系统架构
佛州小李哥3 小时前
亚马逊文生图AI模型深度体验+评测(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
冷冷清清中的风风火火5 小时前
本地部署DeepSeek的硬件配置建议
人工智能·ai
老周聊架构7 小时前
本地部署DeepSeek R1大模型
ai
QQ3596773457 小时前
Github 开源 AI 知识库推荐
人工智能·ai·知识库
怪怪王9 小时前
【编译器】-NIR
ai·chatgpt
Elastic 中国社区官方博客14 小时前
Elasticsearch 混合搜索 - Hybrid Search
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型·全文检索
9命怪猫15 小时前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
d3soft16 小时前
deepseek清华大学第二版 如何获取 DeepSeek如何赋能职场应用 PDF文档 电子档(附下载)
ai·pdf·教程·deepseek·赋能职场