RagFlow部署

一、ragflow相关信息‍‍‍‍‍‍

git地址:https://github.com/infiniflow/ragflow

文档地址:‍https://ragflow.io/docs/dev/

二、部署

复制代码
git clone https://github.com/infiniflow/ragflow.gi
docker compose -f docker/docker-compose.yml up -d
在浏览器中对应的IP地址并登录RAGFlow 默认打开ragflow地址  http://localhost:80

附件代码

复制代码
import streamlit as st
from langchain_community.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Ollama
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains import RetrievalQA

# color palette
primary_color = "#1E90FF"
secondary_color = "#FF6347"
background_color = "#F5F5F5"
text_color = "#4561e9"

# Custom CSS
st.markdown(f"""
    <style>
    .stApp {{
        background-color: {background_color};
        color: {text_color};
    }}
    .stButton>button {{
        background-color: {primary_color};
        color: white;
        border-radius: 5px;
        border: none;
        padding: 10px 20px;
        font-size: 16px;
    }}
    .stTextInput>div>div>input {{
        border: 2px solid {primary_color};
        border-radius: 5px;
        padding: 10px;
        font-size: 16px;
    }}
    .stFileUploader>div>div>div>button {{
        background-color: {secondary_color};
        color: white;
        border-radius: 5px;
        border: none;
        padding: 10px 20px;
        font-size: 16px;
    }}
    </style>
""", unsafe_allow_html=True)

# Streamlit app title
st.title("Build a RAG System with DeepSeek R1 & Ollama")

# Load the PDF
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")

if uploaded_file is not None:
    # Save the uploaded file to a temporary location
    with open("temp.pdf", "wb") as f:
        f.write(uploaded_file.getvalue())

    # Load the PDF
    loader = PDFPlumberLoader("temp.pdf")
    docs = loader.load()

    # Split into chunks
    text_splitter = SemanticChunker(HuggingFaceEmbeddings())
    documents = text_splitter.split_documents(docs)

    # Instantiate the embedding model
    embedder = HuggingFaceEmbeddings()

    # Create the vector store and fill it with embeddings
    vector = FAISS.from_documents(documents, embedder)
    retriever = vector.as_retriever(search_type="similarity", search_kwargs={"k": 3})

    # Define llm
    llm = Ollama(model="deepseek-r1")

    # Define the prompt
    prompt = """
    1. Use the following pieces of context to answer the question at the end.
    2. If you don't know the answer, just say that "I don't know" but don't make up an answer on your own.\n
    3. Keep the answer crisp and limited to 3,4 sentences.

    Context: {context}

    Question: {question}

    Helpful Answer:"""

    QA_CHAIN_PROMPT = PromptTemplate.from_template(prompt)

    llm_chain = LLMChain(
        llm=llm,
        prompt=QA_CHAIN_PROMPT,
        callbacks=None,
        verbose=True)

    document_prompt = PromptTemplate(
        input_variables=["page_content", "source"],
        template="Context:\ncontent:{page_content}\nsource:{source}",
    )

    combine_documents_chain = StuffDocumentsChain(
        llm_chain=llm_chain,
        document_variable_name="context",
        document_prompt=document_prompt,
        callbacks=None)

    qa = RetrievalQA(
        combine_documents_chain=combine_documents_chain,
        verbose=True,
        retriever=retriever,
        return_source_documents=True)

    # User input
    user_input = st.text_input("Ask a question related to the PDF :")

    # Process user input
    if user_input:
        with st.spinner("Processing..."):
            response = qa(user_input)["result"]
            st.write("Response:")
            st.write(response)
else:
    st.write("Please upload a PDF file to proceed.")
相关推荐
weixin_452159551 分钟前
如何从Python初学者进阶为专家?
jvm·数据库·python
Hello.Reader3 分钟前
面向 403 与域名频繁变更的合规爬虫工程实践以 Libvio 系站点为例
爬虫·python·网络爬虫
深蓝海拓16 分钟前
PySide6从0开始学习的笔记(二十五) Qt窗口对象的生命周期和及时销毁
笔记·python·qt·学习·pyqt
Dfreedom.26 分钟前
开运算与闭运算:图像形态学中的“清道夫”与“修复匠”
图像处理·python·opencv·开运算·闭运算
2301_7903009630 分钟前
用Python读取和处理NASA公开API数据
jvm·数据库·python
葱明撅腚41 分钟前
利用Python挖掘城市数据
python·算法·gis·聚类
Serendipity_Carl1 小时前
1637加盟网数据实战(数分可视化)
爬虫·python·pycharm·数据可视化·数据清洗
流㶡1 小时前
网络爬虫之requests.get() 之爬取网页内容
python·数据爬虫
yuankoudaodaokou1 小时前
高校科研新利器:思看科技三维扫描仪助力精密研究
人工智能·python·科技
言無咎1 小时前
从规则引擎到任务规划:AI Agent 重构跨境财税复杂账务处理体系
大数据·人工智能·python·重构