RagFlow部署

一、ragflow相关信息‍‍‍‍‍‍

git地址:https://github.com/infiniflow/ragflow

文档地址:‍https://ragflow.io/docs/dev/

二、部署

复制代码
git clone https://github.com/infiniflow/ragflow.gi
docker compose -f docker/docker-compose.yml up -d
在浏览器中对应的IP地址并登录RAGFlow 默认打开ragflow地址  http://localhost:80

附件代码

复制代码
import streamlit as st
from langchain_community.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Ollama
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains import RetrievalQA

# color palette
primary_color = "#1E90FF"
secondary_color = "#FF6347"
background_color = "#F5F5F5"
text_color = "#4561e9"

# Custom CSS
st.markdown(f"""
    <style>
    .stApp {{
        background-color: {background_color};
        color: {text_color};
    }}
    .stButton>button {{
        background-color: {primary_color};
        color: white;
        border-radius: 5px;
        border: none;
        padding: 10px 20px;
        font-size: 16px;
    }}
    .stTextInput>div>div>input {{
        border: 2px solid {primary_color};
        border-radius: 5px;
        padding: 10px;
        font-size: 16px;
    }}
    .stFileUploader>div>div>div>button {{
        background-color: {secondary_color};
        color: white;
        border-radius: 5px;
        border: none;
        padding: 10px 20px;
        font-size: 16px;
    }}
    </style>
""", unsafe_allow_html=True)

# Streamlit app title
st.title("Build a RAG System with DeepSeek R1 & Ollama")

# Load the PDF
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")

if uploaded_file is not None:
    # Save the uploaded file to a temporary location
    with open("temp.pdf", "wb") as f:
        f.write(uploaded_file.getvalue())

    # Load the PDF
    loader = PDFPlumberLoader("temp.pdf")
    docs = loader.load()

    # Split into chunks
    text_splitter = SemanticChunker(HuggingFaceEmbeddings())
    documents = text_splitter.split_documents(docs)

    # Instantiate the embedding model
    embedder = HuggingFaceEmbeddings()

    # Create the vector store and fill it with embeddings
    vector = FAISS.from_documents(documents, embedder)
    retriever = vector.as_retriever(search_type="similarity", search_kwargs={"k": 3})

    # Define llm
    llm = Ollama(model="deepseek-r1")

    # Define the prompt
    prompt = """
    1. Use the following pieces of context to answer the question at the end.
    2. If you don't know the answer, just say that "I don't know" but don't make up an answer on your own.\n
    3. Keep the answer crisp and limited to 3,4 sentences.

    Context: {context}

    Question: {question}

    Helpful Answer:"""

    QA_CHAIN_PROMPT = PromptTemplate.from_template(prompt)

    llm_chain = LLMChain(
        llm=llm,
        prompt=QA_CHAIN_PROMPT,
        callbacks=None,
        verbose=True)

    document_prompt = PromptTemplate(
        input_variables=["page_content", "source"],
        template="Context:\ncontent:{page_content}\nsource:{source}",
    )

    combine_documents_chain = StuffDocumentsChain(
        llm_chain=llm_chain,
        document_variable_name="context",
        document_prompt=document_prompt,
        callbacks=None)

    qa = RetrievalQA(
        combine_documents_chain=combine_documents_chain,
        verbose=True,
        retriever=retriever,
        return_source_documents=True)

    # User input
    user_input = st.text_input("Ask a question related to the PDF :")

    # Process user input
    if user_input:
        with st.spinner("Processing..."):
            response = qa(user_input)["result"]
            st.write("Response:")
            st.write(response)
else:
    st.write("Please upload a PDF file to proceed.")
相关推荐
小赖同学啊2 小时前
物联网数据安全区块链服务
开发语言·python·区块链
码荼2 小时前
学习开发之hashmap
java·python·学习·哈希算法·个人开发·小白学开发·不花钱不花时间crud
小陈phd3 小时前
李宏毅机器学习笔记——梯度下降法
人工智能·python·机器学习
kk爱闹3 小时前
【挑战14天学完python和pytorch】- day01
android·pytorch·python
Blossom.1183 小时前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn
亚力山大抵3 小时前
实验六-使用PyMySQL数据存储的Flask登录系统-实验七-集成Flask-SocketIO的实时通信系统
后端·python·flask
showyoui4 小时前
Python 闭包(Closure)实战总结
开发语言·python
amazinging4 小时前
北京-4年功能测试2年空窗-报培训班学测开-第四十一天
python·学习·appium
amazinging4 小时前
北京-4年功能测试2年空窗-报培训班学测开-第三十九天
python·学习·appium
m0_723140235 小时前
Python训练营-Day42
python