RagFlow部署

一、ragflow相关信息‍‍‍‍‍‍

git地址:https://github.com/infiniflow/ragflow

文档地址:‍https://ragflow.io/docs/dev/

二、部署

复制代码
git clone https://github.com/infiniflow/ragflow.gi
docker compose -f docker/docker-compose.yml up -d
在浏览器中对应的IP地址并登录RAGFlow 默认打开ragflow地址  http://localhost:80

附件代码

复制代码
import streamlit as st
from langchain_community.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Ollama
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains import RetrievalQA

# color palette
primary_color = "#1E90FF"
secondary_color = "#FF6347"
background_color = "#F5F5F5"
text_color = "#4561e9"

# Custom CSS
st.markdown(f"""
    <style>
    .stApp {{
        background-color: {background_color};
        color: {text_color};
    }}
    .stButton>button {{
        background-color: {primary_color};
        color: white;
        border-radius: 5px;
        border: none;
        padding: 10px 20px;
        font-size: 16px;
    }}
    .stTextInput>div>div>input {{
        border: 2px solid {primary_color};
        border-radius: 5px;
        padding: 10px;
        font-size: 16px;
    }}
    .stFileUploader>div>div>div>button {{
        background-color: {secondary_color};
        color: white;
        border-radius: 5px;
        border: none;
        padding: 10px 20px;
        font-size: 16px;
    }}
    </style>
""", unsafe_allow_html=True)

# Streamlit app title
st.title("Build a RAG System with DeepSeek R1 & Ollama")

# Load the PDF
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")

if uploaded_file is not None:
    # Save the uploaded file to a temporary location
    with open("temp.pdf", "wb") as f:
        f.write(uploaded_file.getvalue())

    # Load the PDF
    loader = PDFPlumberLoader("temp.pdf")
    docs = loader.load()

    # Split into chunks
    text_splitter = SemanticChunker(HuggingFaceEmbeddings())
    documents = text_splitter.split_documents(docs)

    # Instantiate the embedding model
    embedder = HuggingFaceEmbeddings()

    # Create the vector store and fill it with embeddings
    vector = FAISS.from_documents(documents, embedder)
    retriever = vector.as_retriever(search_type="similarity", search_kwargs={"k": 3})

    # Define llm
    llm = Ollama(model="deepseek-r1")

    # Define the prompt
    prompt = """
    1. Use the following pieces of context to answer the question at the end.
    2. If you don't know the answer, just say that "I don't know" but don't make up an answer on your own.\n
    3. Keep the answer crisp and limited to 3,4 sentences.

    Context: {context}

    Question: {question}

    Helpful Answer:"""

    QA_CHAIN_PROMPT = PromptTemplate.from_template(prompt)

    llm_chain = LLMChain(
        llm=llm,
        prompt=QA_CHAIN_PROMPT,
        callbacks=None,
        verbose=True)

    document_prompt = PromptTemplate(
        input_variables=["page_content", "source"],
        template="Context:\ncontent:{page_content}\nsource:{source}",
    )

    combine_documents_chain = StuffDocumentsChain(
        llm_chain=llm_chain,
        document_variable_name="context",
        document_prompt=document_prompt,
        callbacks=None)

    qa = RetrievalQA(
        combine_documents_chain=combine_documents_chain,
        verbose=True,
        retriever=retriever,
        return_source_documents=True)

    # User input
    user_input = st.text_input("Ask a question related to the PDF :")

    # Process user input
    if user_input:
        with st.spinner("Processing..."):
            response = qa(user_input)["result"]
            st.write("Response:")
            st.write(response)
else:
    st.write("Please upload a PDF file to proceed.")
相关推荐
一尘之中2 小时前
在Python 2.7中安装SQLAlchemy的完整指南
开发语言·python·ai写作
电商数据girl2 小时前
Python 爬虫获得淘宝商品详情 数据【淘宝商品API】
大数据·开发语言·人工智能·爬虫·python·json·php
钢铁男儿2 小时前
Python 网络编程进阶:使用 SocketServer 模块构建 TCP 服务器与客户端
网络·python·tcp/ip
大模型真好玩3 小时前
深入浅出LangChain AI Agent智能体开发教程(十)—LangChain搭建数据分析智能助手
人工智能·python·mcp
七夜zippoe4 小时前
Python性能优化实战(三):给内存“减负“的实用指南
python·内存·优化
WSSWWWSSW9 小时前
Seaborn数据可视化实战:Seaborn数据可视化基础-从内置数据集到外部数据集的应用
python·信息可视化·数据分析·matplotlib·seaborn
Small___ming9 小时前
Matplotlib 可视化大师系列(七):专属篇 - 绘制误差线、等高线与更多特殊图表
python·信息可视化·matplotlib
荼蘼11 小时前
CUDA安装,pytorch库安装
人工智能·pytorch·python
杨荧12 小时前
基于Python的农作物病虫害防治网站 Python+Django+Vue.js
大数据·前端·vue.js·爬虫·python
骑驴看星星a13 小时前
数学建模--Topsis(Python)
开发语言·python·学习·数学建模