RagFlow部署

一、ragflow相关信息‍‍‍‍‍‍

git地址:https://github.com/infiniflow/ragflow

文档地址:‍https://ragflow.io/docs/dev/

二、部署

复制代码
git clone https://github.com/infiniflow/ragflow.gi
docker compose -f docker/docker-compose.yml up -d
在浏览器中对应的IP地址并登录RAGFlow 默认打开ragflow地址  http://localhost:80

附件代码

复制代码
import streamlit as st
from langchain_community.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Ollama
from langchain.prompts import PromptTemplate
from langchain.chains.llm import LLMChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains import RetrievalQA

# color palette
primary_color = "#1E90FF"
secondary_color = "#FF6347"
background_color = "#F5F5F5"
text_color = "#4561e9"

# Custom CSS
st.markdown(f"""
    <style>
    .stApp {{
        background-color: {background_color};
        color: {text_color};
    }}
    .stButton>button {{
        background-color: {primary_color};
        color: white;
        border-radius: 5px;
        border: none;
        padding: 10px 20px;
        font-size: 16px;
    }}
    .stTextInput>div>div>input {{
        border: 2px solid {primary_color};
        border-radius: 5px;
        padding: 10px;
        font-size: 16px;
    }}
    .stFileUploader>div>div>div>button {{
        background-color: {secondary_color};
        color: white;
        border-radius: 5px;
        border: none;
        padding: 10px 20px;
        font-size: 16px;
    }}
    </style>
""", unsafe_allow_html=True)

# Streamlit app title
st.title("Build a RAG System with DeepSeek R1 & Ollama")

# Load the PDF
uploaded_file = st.file_uploader("Upload a PDF file", type="pdf")

if uploaded_file is not None:
    # Save the uploaded file to a temporary location
    with open("temp.pdf", "wb") as f:
        f.write(uploaded_file.getvalue())

    # Load the PDF
    loader = PDFPlumberLoader("temp.pdf")
    docs = loader.load()

    # Split into chunks
    text_splitter = SemanticChunker(HuggingFaceEmbeddings())
    documents = text_splitter.split_documents(docs)

    # Instantiate the embedding model
    embedder = HuggingFaceEmbeddings()

    # Create the vector store and fill it with embeddings
    vector = FAISS.from_documents(documents, embedder)
    retriever = vector.as_retriever(search_type="similarity", search_kwargs={"k": 3})

    # Define llm
    llm = Ollama(model="deepseek-r1")

    # Define the prompt
    prompt = """
    1. Use the following pieces of context to answer the question at the end.
    2. If you don't know the answer, just say that "I don't know" but don't make up an answer on your own.\n
    3. Keep the answer crisp and limited to 3,4 sentences.

    Context: {context}

    Question: {question}

    Helpful Answer:"""

    QA_CHAIN_PROMPT = PromptTemplate.from_template(prompt)

    llm_chain = LLMChain(
        llm=llm,
        prompt=QA_CHAIN_PROMPT,
        callbacks=None,
        verbose=True)

    document_prompt = PromptTemplate(
        input_variables=["page_content", "source"],
        template="Context:\ncontent:{page_content}\nsource:{source}",
    )

    combine_documents_chain = StuffDocumentsChain(
        llm_chain=llm_chain,
        document_variable_name="context",
        document_prompt=document_prompt,
        callbacks=None)

    qa = RetrievalQA(
        combine_documents_chain=combine_documents_chain,
        verbose=True,
        retriever=retriever,
        return_source_documents=True)

    # User input
    user_input = st.text_input("Ask a question related to the PDF :")

    # Process user input
    if user_input:
        with st.spinner("Processing..."):
            response = qa(user_input)["result"]
            st.write("Response:")
            st.write(response)
else:
    st.write("Please upload a PDF file to proceed.")
相关推荐
程序员三藏3 分钟前
软件测试之压力测试详解
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·压力测试
BINGCHN13 分钟前
流量分析进阶(一):RCTF2025-Shadows of Asgard
开发语言·python
GeekPMAlex40 分钟前
Python SQLite多线程、上下文管理器与生成器全面解析
python
顾安r41 分钟前
11.22 脚本 手机termux项目分析(bash)
前端·python·stm32·flask·bash
IT·小灰灰1 小时前
基于Python的机器学习/数据分析环境搭建完全指南
开发语言·人工智能·python·算法·机器学习·数据分析
程序员爱钓鱼2 小时前
Python职业路线规划:从入门到高级开发者的成长指南
后端·python·trae
程序员爱钓鱼2 小时前
Python 编程实战 · 进阶与职业发展:自动化运维(Ansible、Fabric)
后端·python·trae
rising start2 小时前
二、python面向对象高级
开发语言·python
虎头金猫2 小时前
随时随地处理图片文档!Reubah 加cpolar的实用体验
linux·运维·人工智能·python·docker·开源·visual studio
Yue丶越2 小时前
【Python】基础语法入门(二)
android·开发语言·python