文本表示方法

词向量

独热编码模型和分布式表征模型

独热编码 分布式表征
固定长度的稠密词向量
优点 一个单词一个维度,彼此之间构成标准正交向量组 数字化后的数值可以表示语义上的关系
缺点 稀疏, 词向量维度大导致计算效率低

独热编码会根据语料库中的单词个数,来确定词向量的维度

分布式表征,预先确定词向量的维度,生成的词向量

文本表示方法

基于统计的词向量

词袋模型 Bag of words, BOW

忽略文本中词语的顺序和语法结构 ,将文本视为词的集合,通过词汇表中每个单词在文本中出现的次数来表示文本。

TF-IDF

单词在特定文本中的重要性得分表示为:单词在文本出现的频率和出现改单词的文本数量在语料库中的频率。

基于神经网络的词向量

Word2Vec

Word2Vec 有两种架构:CBOW(Continuous Bag of Words) 和 Skip-Gram。其中,CBOW 是根据上下文来预测中心词,而 Skip-Gram 是根据中心词来预测上下文。

例如:you say goodbye and i say hello.

如果上下文窗口为 1,对于 CBOW 来说,you say goodbye 中的目标预测词为 say,上下文为 you goodbye。

CBOW
训练过程

构建训练集和测试集。

you say goodbye and i say hello.设定上下文窗口为 1.

上下文 目标词
you goodbye say
say and goodbye
goodbye i and
and say i
i hello say
  1. 文本预处理。假设词汇表大小为 V,词向量为 d

word2vec连续词袋模型CBOW详解,使用Pytorch实现 - 知乎

Glove

基于单词的共现矩阵来学习词向量。其中,共现矩阵记录两个单词在语料库中共现的次数。


Transformer 相较于 RNN 的改进

  1. 并行计算
  2. 因为 attention 机制能一次获取全局信息,所以最长计算路径短
  3. 可以捕捉长距离依赖关系
相关推荐
郝学胜-神的一滴2 天前
机器学习特征提取:TF-IDF模型详解与实践指南
开发语言·人工智能·python·程序人生·机器学习·tf-idf·sklearn
子夜江寒8 天前
了解 TF-IDF
tf-idf
Pyeako9 天前
机器学习--K-means聚类&DBSCAN&TF-IDF
python·机器学习·kmeans·tf-idf·聚类·dbscan
一招定胜负11 天前
KMeans、DBSCAN聚类与TF-IDF文本特征提取
kmeans·tf-idf·聚类
阿杰学AI18 天前
AI核心知识61——大语言模型之Embedding (简洁且通俗易懂版)
人工智能·机器学习·ai·语言模型·自然语言处理·embedding·词向量
草根研究生21 天前
BM25, TF-IDF, Faiss-based methods
tf-idf·faiss
_codemonster24 天前
自然语言处理容易混淆知识点(一)c-TF-IDF和TF-IDF的区别
c语言·自然语言处理·tf-idf
Good kid.1 个月前
基于XGBoost的中文垃圾分类系统实战(TF-IDF + XGBoost)
人工智能·分类·tf-idf
andeyeluguo1 个月前
TF-IDF的计算过程和搜索过程
tf-idf
hudawei9961 个月前
词嵌入中语料库矩阵和句子矩阵是怎样的?
人工智能·ai·自然语言处理·词嵌入·word embedding·词向量·语义理解