从字符串中匹配多个关键词,优先匹配更长的关键词

(1)把关键词按长度排序

(2)循环匹配关键词

(3)匹配到之后,就把关键词从字符串中删除

(4)继续匹配其他关键词

python 复制代码
import pandas as pd
import re

keyword_list = ['iPhone', 'iPhone 13 Pro', 'iPhone 13']

keyword_list = sorted(keyword_list, key=lambda x: len(x), reverse=True)

# 提取字符串中的关键词(忽略大小写和空格)
def extract_keywords(text_str):
    # 去除字符串中的所有空格,并小写
    text_str = re.sub(r'\s+', '', text_str).lower()
    matched_keywords = []
    # 遍历关键词列表
    for keyword in keyword_list:
        # 去除关键词中的空格,并小写
        keyword_re = re.sub(r'\s+', '', keyword).lower()
        # 检查关键词是否出现在字符串中
        if re.search(keyword_re, text_str):
            # 将匹配到的关键词原词加入匹配到的列表中
            matched_keywords.append(keyword)
            # 从字符串中删除匹配到的关键词
            text_str = text_str.replace(keyword_re, "")
    # 返回提取结果,使用逗号分隔
    return ', '.join(matched_keywords)


text_str = '''
iPhone 13和iPhone 13 Pro是同一代产品,都是iPhone家族的一员
'''

matched_keywords = extract_keywords(text_str)
print(matched_keywords)

# 批量处理

# # 关键词所在的excel表
# df1 = pd.read_excel(r'D:\关键词文件.xlsx')
# # 字符串所在的excel表
# df2 = pd.read_excel(r'D:\字符串文件.xlsx')


# # 获取df1中的关键词列表,并按长度排序
# keyword_list = sorted(df1['关键词'].tolist(), key=lambda x: len(x), reverse=True)
# print(keyword_list)

# 应用提取函数
# df2['提取结果'] = df2['字符串'].apply(extract_keywords)
# # 查看结果
# # print(df2)

# df2.to_excel(r'D:\提取结果.xlsx')
# print('excel写入完成!')
相关推荐
咖啡の猫6 小时前
Python字典推导式
开发语言·python
曹文杰15190301126 小时前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
Wulida0099917 小时前
建筑物表面缺陷检测与识别:基于YOLO11-C3k2-Strip模型的智能检测系统
python
烛阴7 小时前
C# 正则表达式(2):Regex 基础语法与常用 API 全解析
前端·正则表达式·c#
FJW0208147 小时前
Python_work4
开发语言·python
爱笑的眼睛118 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai
yaoh.wang8 小时前
力扣(LeetCode) 88: 合并两个有序数组 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·双指针
执笔论英雄8 小时前
【RL】slime创建actor的流程
python
吴佳浩 Alben8 小时前
Python入门指南(四)
开发语言·后端·python
小智RE0-走在路上9 小时前
Python学习笔记(8) --函数的多返回值,不同传参,匿名函数
笔记·python·学习