Ollama 运行至GPU-问题小记

【背景】在部署Ollama后,始终发现Ollama运行的方式是CPU,这样就会造成我后续下载的模型的运行方式都是CPU,而当前模型运行的方式希望是GPU。

【排查点】

在 Linux 下使用 Ollama 进行 GPU 加速通常需要确保以下几点:

  1. 安装 NVIDIA 驱动 :确保你的系统已经安装了与 GPU 兼容的 NVIDIA 驱动。 具体安装过程

  2. 安装 CUDA 和 cuDNN:Ollama 需要 CUDA(并且可能需要 cuDNN)来支持 GPU 加速。确保安装适合你的 NVIDIA 驱动版本的 CUDA 和 cuDNN。

  3. 设置环境变量

    • 确保将 CUDA 的 bin 和 lib 目录添加到你的 PATH 和 LD_LIBRARY_PATH 环境变量中。
  4. 安装和配置 Ollama:根据 Ollama 的安装指南进行安装,并确保能够识别和使用 GPU。

  5. 验证安装:可以通过运行一些 Ollama 提供的示例或测试来验证 GPU 是否被成功识别和使用。

【遇到问题 -1】

在进行CUDA 和 cuDNN的安装排查时:

输入命令 nvcc -V

bash 复制代码
nvcc -V

# 报错返回
# sh: nvcc: command not found

【解决办法】

查看cudabin 目录下是否有nvcc

bash 复制代码
cd /usr/local/cuda/bin
ls -a

如果存在,直接将cuda路径加入系统路径即可:

bash 复制代码
vim ~/.bashrc

增加内容

bash 复制代码
export LD_LIBRARY_PATH=/usr/local/cuda/lib:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda/bin:$PATH

更新文件

bash 复制代码
source ~/.bashrc

再次执行nvcc -V 就可以看到相应cuda版本了

vbnet 复制代码
(weather) sh-4.4$ nvcc -V 
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Thu_Mar_28_02:18:24_PDT_2024
Cuda compilation tools, release 12.4, V12.4.131
Build cuda_12.4.r12.4/compiler.34097967_0

【结果】

处理完上述问题后,有重新启动了Ollama,则发现已经在使用GPU运行了;

Ollama服务 启动、查询状态、停止命令

bash 复制代码
#启动
sudo systemctl start ollama.service

#重启
sudo systemctl restart ollama.service

# 状态
sudo systemctl status ollama.service

#停止
sudo systemctl stop ollama.service

【补充】

在运行Ollama服务 过程中遇到关于daemon-reload的问题则可以运行如下命令

复制代码
sudo systemctl daemon-reload
相关推荐
考虑考虑10 分钟前
Springboot3.5.x结构化日志新属性
spring boot·后端·spring
涡能增压发动积11 分钟前
一起来学 Langgraph [第三节]
后端
sky_ph24 分钟前
JAVA-GC浅析(二)G1(Garbage First)回收器
java·后端
涡能增压发动积30 分钟前
一起来学 Langgraph [第二节]
后端
hello早上好1 小时前
Spring不同类型的ApplicationContext的创建方式
java·后端·架构
roman_日积跬步-终至千里1 小时前
【Go语言基础【20】】Go的包与工程
开发语言·后端·golang
00后程序员2 小时前
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
后端
HyggeBest2 小时前
Mysql的数据存储结构
后端·架构
TobyMint3 小时前
golang 实现雪花算法
后端
G探险者3 小时前
【案例解析】一次 TIME_WAIT 导致 TPS 断崖式下降的排查与优化
后端