论文略:ACloser Look into Mixture-of-Experts in Large Language Models

202406 arxiv

关于这几个MOE的详细实验

  • 主要实验发现:
    • Mixtral可能包含具有独特属性的专家
    • DeepSeek和Grok的专家权重矩阵的相似性通常低于Mixtral(DeepSeek和Grok专家的矩阵级相似性通常接近零,而Mixtral专家的相似性平均约为0.3)
    • 如图1中的Mixtral热力图所示,不同专家的权重在较深层次的相似性较低(越深的层次,专家的多元性越大)
    • Wup、Wdown和 Wgate在其相似性热力图中共享相似的模式
    • 门控嵌入的相似性和 Wgate 的相似性表现出正相关
  • Mixtral 和 DeepSeek 不同专家的输出在深层(最后几层)之间差异较大(差异更为明显)
  • 专家输出的平均热力图类似于神经元级相似性图
    • ------>权重相似性度量可以反映输出相似性
  • Grok专家展示出较高的输出相似性
相关推荐
2601_949593651 小时前
深入解析CANN-acl应用层接口:构建高效的AI应用开发框架
数据库·人工智能
●VON1 小时前
CANN安全与隐私:从模型加固到数据合规的全栈防护实战
人工智能·安全
kjkdd1 小时前
6.1 核心组件(Agent)
python·ai·语言模型·langchain·ai编程
刘大大Leo1 小时前
GPT-5.3-Codex 炸了:第一个「自己造自己」的 AI 编程模型,到底意味着什么?
人工智能·gpt
小镇敲码人1 小时前
剖析CANN框架中Samples仓库:从示例到实战的AI开发指南
c++·人工智能·python·华为·acl·cann
摘星编程1 小时前
CANN ops-nn Pooling算子解读:CNN模型下采样与特征提取的核心
人工智能·神经网络·cnn
程序员清洒2 小时前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
island13142 小时前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构
小白|2 小时前
CANN与实时音视频AI:构建低延迟智能通信系统的全栈实践
人工智能·实时音视频
Kiyra2 小时前
作为后端开发你不得不知的 AI 知识——Prompt(提示词)
人工智能·prompt