Spring Boot中整合Flink CDC 数据库变更监听器来实现对MySQL数据库

Flink CDC(Change Data Capture)是Flink的一种数据实时获取的扩展,用于捕获数据库中的数据变化,并且通过实时流式处理机制来操作这些变化的数据,在Flink CDC中通过Debezium提供的数据库变更监听器来实现对MySQL数据库的监听操作,通过与Spring Boot技术的集成可以更加高效的实现数据实时同步的操作。

下面我们就来介绍一下如何在Spring Boot中集成Flink CDC。

环境搭建

首先我们可以通过Docker容器技术来构建一个MySQL的数据库容器如下所示。

复制代码
docker run --name mysql -e MYSQL_ROOT_PASSWORD=root -d -p 3306:3306 mysql:8.0

然后我们可以连接数据库然后创建用于测试的数据库表结构,如下所示。

复制代码
CREATE DATABASE testdb;
USE testdb;

CREATE TABLE employee (
    id INT AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(255),
    age INT
);

INSERT INTO employee (name, age) VALUES ('John', 28), ('Alice', 30), ('Bob', 25);

搭建好MySQL数据库服务之后,接下来我们可以通过Docker启动Flink服务,如下所示。

复制代码
docker run -d -p 8081:8081 --name flink-jobmanager flink:latest
docker run -d --link flink-jobmanager --name flink-taskmanager flink:latest taskmanager

准备好服务之后,接下来我们就来构建一个Spring Boot的项目用来连接Flink CDC。如下所示,首先需要在项目的POM文件中添加Flink CDC和其他所需的依赖

复制代码
<dependencies>
    <!-- Spring Boot dependencies -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-jpa</artifactId>
    </dependency>

    <!-- Flink dependencies -->
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-connector-jdbc_2.11</artifactId>
        <version>1.16.0</version>  <!-- 根据需要调整版本 -->
    </dependency>

    <!-- Flink CDC dependencies -->
    <dependency>
        <groupId>com.ververica</groupId>
        <artifactId>flink-connector-debezium-mysql_2.11</artifactId>
        <version>1.16.0</version>
    </dependency>

    <!-- MySQL JDBC driver -->
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>8.0.25</version>
    </dependency>
</dependencies>

接下来就需要将Flink CDC连接到MySQL数据库并监听数据变动,需要在Spring Boot的配置文件中添加Flink CDC连接参数,如下所示。

复制代码
spring.datasource.url=jdbc:mysql://localhost:3306/testdb?useSSL=false&serverTimezone=UTC
spring.datasource.username=root
spring.datasource.password=root

接下来就是需要创建一个Flink作业来捕获数据库的变更情况并进行相关的逻辑处理,如下所示。

复制代码
public class FlinkCDCJob {

    public static void main(String[] args) throws Exception {
        // 1. 创建流处理环境
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 2. 配置Flink CDC的Debezium源
        DebeziumSourceFunction<String> sourceFunction = DebeziumSourceFunction
            .<String>builder()
            .hostname("localhost")
            .port(3306)
            .username("root")
            .password("root")
            .databaseList("testdb")
            .tableList("testdb.employee")
            .startupMode(DebeziumSourceFunction.StartupMode.LATEST_OFFSET)
            .deserializer(new JsonNodeDeserializationSchema())
            .build();

        // 3. 创建CDC数据流
        DataStream<String> stream = env.addSource(sourceFunction);

        // 4. 打印数据到控制台
        stream.map(new MapFunction<String, String>() {
            @Override
            public String map(String value) throws Exception {
                return "CDC 数据:" + value;
            }
        }).print();

        // 5. 执行作业
        env.execute("Flink CDC Example");
    }
}

根据上面的代码实现,DebeziumSourceFunction用来配置一个数据库的连接,然后制定好需要监听的数据库以及数据库表,然后我们可以启动项目然后可以尝试往MySQL数据库的employee表中插入、更新或者是删除数据,这个时候我们就可以看到控制台中有对应的数据变化监听打印信息。

监听到数据变化情况之后,接下来,我们可以通过Flink的实时流处理操作将数据推送到Kafka、ElasticSearch等数据存储中。

总结

在上面介绍中,我们介绍了如何在Spring Boot中整合Flink CDC来实现数据库数据变化的实时捕获监听操作,在实际实现中,我们可以根据具体的业务需求对操作进行进一步的扩展,例如可以将CDC数据写入Kafka、Hadoop、Elasticsearch等实时数据平台,构建更强大的数据流处理系统。

相关推荐
fen_fen1 小时前
用户信息表建表及批量插入 100 条数据(MySQL/Oracle)
数据库·mysql·oracle
马克Markorg7 小时前
常见的向量数据库和具有向量数据库能力的数据库
数据库
JH30739 小时前
SpringBoot 优雅处理金额格式化:拦截器+自定义注解方案
java·spring boot·spring
Coder_Boy_10 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
helloworldandy10 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
数据知道12 小时前
PostgreSQL 故障排查:如何找出数据库中最耗时的 SQL 语句
数据库·sql·postgresql
qq_124987075312 小时前
基于SSM的动物保护系统的设计与实现(源码+论文+部署+安装)
java·数据库·spring boot·毕业设计·ssm·计算机毕业设计
枷锁—sha12 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
Coder_Boy_12 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
Gain_chance12 小时前
35-学习笔记尚硅谷数仓搭建-DWS层最近n日汇总表及历史至今汇总表建表语句
数据库·数据仓库·hive·笔记·学习