Kafka面试题----Kafka是如何保证顺序消费的

在 Kafka 中,默认情况下消息是按分区进行顺序存储和读取的,但全局顺序消费(即所有分区的消息按顺序消费)较难实现。下面分别介绍 Kafka 按分区顺序消费以及实现全局顺序消费的相关内容

按分区顺序消费

Kafka 本身可以保证单个分区内的消息是顺序写入和顺序读取的,以下是其原理和实现要点:

原理

  • 消息写入:Kafka 生产者在发送消息时,如果指定了分区,消息会被顺序追加到该分区的日志文件末尾。Kafka 的分区日志是一个只允许追加写入的文件,这种设计保证了消息在分区内的顺序性。
  • 消息读取:Kafka 消费者从分区中按偏移量(offset)顺序读取消息,偏移量是消息在分区内的唯一标识,消费者按照偏移量从小到大的顺序读取消息,从而保证了消息消费的顺序性。

实现要点

  • 生产者配置:生产者在发送消息时,需要明确指定消息要发送到的分区。可以通过自定义分区器或者直接指定分区号来实现。
java 复制代码
import org.apache.kafka.clients.producer.*;
import java.util.Properties;

public class OrderedProducer {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        Producer<String, String> producer = new KafkaProducer<>(props);
        String topic = "test-topic";
        int partition = 0; // 指定分区号

        for (int i = 0; i < 10; i++) {
            ProducerRecord<String, String> record = new ProducerRecord<>(topic, partition, "key-" + i, "value-" + i);
            producer.send(record);
        }

        producer.close();
    }
}
  • 消费者配置:消费者需要确保按顺序处理消息,并且在处理完一条消息后再处理下一条消息。同时,要避免手动调整偏移量,以免破坏消息的顺序。
java 复制代码
import org.apache.kafka.clients.consumer.*;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

public class OrderedConsumer {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("group.id", "test-group");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("auto.offset.reset", "earliest");

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        String topic = "test-topic";
        consumer.subscribe(Collections.singletonList(topic));

        try {
            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
                for (ConsumerRecord<String, String> record : records) {
                    System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
                    // 处理完一条消息后再处理下一条
                }
                consumer.commitSync(); // 同步提交偏移量
            }
        } finally {
            consumer.close();
        }
    }
}

全局顺序消费

要实现全局顺序消费,需要将所有消息发送到同一个分区,因为 Kafka 只能保证单个分区内的消息顺序性。但这种方式会带来性能瓶颈,因为单个分区的处理能力是有限的。

实现要点

  • 生产者配置:生产者需要将所有消息都发送到同一个分区,可以通过自定义分区器来实现。
java 复制代码
import org.apache.kafka.clients.producer.*;
import java.util.Properties;

public class GlobalOrderedProducer {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("partitioner.class", "com.example.SinglePartitionPartitioner");

        Producer<String, String> producer = new KafkaProducer<>(props);
        String topic = "test-topic";

        for (int i = 0; i < 10; i++) {
            ProducerRecord<String, String> record = new ProducerRecord<>(topic, "key-" + i, "value-" + i);
            producer.send(record);
        }

        producer.close();
    }
}

// 自定义分区器,将所有消息发送到同一个分区
class SinglePartitionPartitioner implements Partitioner {
    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        return 0; // 所有消息都发送到分区0
    }

    @Override
    public void close() {}

    @Override
    public void configure(java.util.Map<String, ?> configs) {}
}
  • 消费者配置:只需要一个消费者实例来消费该分区的消息,避免多个消费者同时消费同一个分区导致的顺序问题。
java 复制代码
import org.apache.kafka.clients.consumer.*;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

public class GlobalOrderedConsumer {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("group.id", "test-group");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("auto.offset.reset", "earliest");

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        String topic = "test-topic";
        consumer.subscribe(Collections.singletonList(topic));

        try {
            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
                for (ConsumerRecord<String, String> record : records) {
                    System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
                    // 处理完一条消息后再处理下一条
                }
                consumer.commitSync(); // 同步提交偏移量
            }
        } finally {
            consumer.close();
        }
    }
}
相关推荐
BYSJMG1 小时前
计算机毕设大数据方向:基于Spark+Hadoop的餐饮外卖平台数据分析系统【源码+文档+调试】
大数据·hadoop·分布式·python·spark·django·课程设计
PXM的算法星球4 小时前
ZooKeeper vs Redis:分布式锁的实现与选型指南
redis·分布式·zookeeper
THMAIL5 小时前
量化基金从小白到大师 - 金融数据获取大全:从免费API到Tick级数据实战指南
人工智能·python·深度学习·算法·机器学习·金融·kafka
寒士obj5 小时前
Redisson分布式锁:看门狗机制与续期原理
redis·分布式
Micrle_0075 小时前
java分布式场景怎么实现一个高效的 读-写锁
java·分布式
楠枬6 小时前
Curator 如何实现分布式锁
分布式·zookeeper
Badman6 小时前
分布式系统下的数据一致性-Redis分布式锁
redis·分布式·后端
武子康9 小时前
Java-118 深入浅出 MySQL ShardingSphere 分片剖析:SQL 支持范围、限制与优化实践
java·大数据·数据库·分布式·sql·mysql·性能优化
毕设源码-赖学姐10 小时前
【开题答辩全过程】以 基于Hadoop电商数据的可视化分析为例,包含答辩的问题和答案
大数据·hadoop·分布式
喂完待续11 小时前
【Big Data】Apache Kafka 分布式流处理平台的实时处理实践与洞察
分布式·kafka·消息队列·big data·数据处理·序列晋升