ow rank decomposition如何用于矩阵的分解

1. 什么是矩阵分解和低秩分解

矩阵分解 是将一个矩阵表示为若干结构更简单或具有特定性质的矩阵的组合或乘积的过程。低秩分解(Low Rank Decomposition)是其中一种方法,旨在将原矩阵近似为两个或多个秩较低的矩阵的乘积,从而降低复杂度、节省存储空间或提取潜在特征。

矩阵的是指矩阵中线性无关的行或列的最大数目,它反映了矩阵所包含的信息的"维度"。比如一个秩为2的矩阵,说明它的行空间或列空间是二维的。低秩分解可能就是把一个矩阵分解成两个或多个秩较低的矩阵的乘积,从而近似原始矩阵。

2. 分解的用途

比如在推荐系统中,用户-物品评分矩阵可能非常大且稀疏,通过低秩分解可以找到潜在因素,从而进行预测。或者图像压缩,把图像矩阵分解成低秩形式,减少存储空间。

3. 具体如何操作

假设有一个大矩阵A,其秩r实际上很高,或者说满秩。但如果我们想用更低秩的矩阵来近似它,比如用秩k(k<r)的两个矩阵B和C的乘积来近似A,即A≈BC,其中B的列数等于C的行数,且这个共同的维度是k。这样,原来的矩阵A的每个元素可以表示为B的行和C的列的点积。这样的话,存储B和C所需的存储空间可能比原矩阵A小很多,特别是当k远小于原矩阵的行数和列数时。

例如,假设原矩阵A是m×n的,那么存储它需要m×n个元素。如果分解成B(m×k)和C(k×n),那么总共有k×(m + n)个元素。当k远小于m和n时,存储量就减少了很多。比如m=1000,n=1000,k=10,那么原矩阵需要1,000,000个元素,分解后的两个矩阵只需要10×(1000+1000)=20,000个元素,节省了98%的空间。不过这样会损失一些信息,所以需要找到最优的B和C使得BC尽可能接近A。这时候可能需要用某种优化方法,比如最小化A和BC的Frobenius范数差异,如下公式,也就是最小二乘法。

求解此公式的方法:

  • 奇异值分解(SVD):截断前 k 个奇异值,得到最优低秩近似(Eckart--Young 定理)。

  • 交替最小二乘法(ALS):交替固定 B 优化 C,再固定 C 优化 B。

相关推荐
witAI7 分钟前
**AI漫剧制作工具2025推荐,解锁高效创作新体验**
人工智能·python
qinyia10 分钟前
如何在服务器上查看网络连接数并进行综合分析
linux·运维·服务器·开发语言·人工智能·php
新缸中之脑13 分钟前
构建一个论文学习AI助手
人工智能·学习
说私域13 分钟前
私域流量生态重构:链动2+1模式S2B2C商城小程序的流量整合与价值创造
人工智能·小程序·流量运营·私域运营
圆奋奋14 分钟前
让“小爱音箱PRO”智能起来:接入豆包AI
人工智能
aiguangyuan17 分钟前
使用PyTorch和Hugging Face Transformers构建GPT教学演示:从基础原理到实践应用
人工智能·python·nlp
自可乐19 分钟前
Apache Airflow完全学习指南:从入门到精通的系统教程
人工智能·机器学习·apache
说私域21 分钟前
AI智能名片S2B2C商城小程序赋能下线上向线下导流的机制与效果研究——基于线下专属优惠券的视角
人工智能·小程序·流量运营·私域运营
朴实赋能23 分钟前
2026跨境电商生死局:AI大模型重构购物链路,智矩引擎打造品牌出海“自动驾驶”系统
人工智能·社媒矩阵·文旅出海·海外社媒引流·ai大模型跨境电商·shopify独立站引流·社媒矩阵流量创造
啊巴矲24 分钟前
小白从零开始勇闯人工智能:计算机视觉初级篇(OpenCV补充(1))
人工智能·opencv·计算机视觉