ow rank decomposition如何用于矩阵的分解

1. 什么是矩阵分解和低秩分解

矩阵分解 是将一个矩阵表示为若干结构更简单或具有特定性质的矩阵的组合或乘积的过程。低秩分解(Low Rank Decomposition)是其中一种方法,旨在将原矩阵近似为两个或多个秩较低的矩阵的乘积,从而降低复杂度、节省存储空间或提取潜在特征。

矩阵的是指矩阵中线性无关的行或列的最大数目,它反映了矩阵所包含的信息的"维度"。比如一个秩为2的矩阵,说明它的行空间或列空间是二维的。低秩分解可能就是把一个矩阵分解成两个或多个秩较低的矩阵的乘积,从而近似原始矩阵。

2. 分解的用途

比如在推荐系统中,用户-物品评分矩阵可能非常大且稀疏,通过低秩分解可以找到潜在因素,从而进行预测。或者图像压缩,把图像矩阵分解成低秩形式,减少存储空间。

3. 具体如何操作

假设有一个大矩阵A,其秩r实际上很高,或者说满秩。但如果我们想用更低秩的矩阵来近似它,比如用秩k(k<r)的两个矩阵B和C的乘积来近似A,即A≈BC,其中B的列数等于C的行数,且这个共同的维度是k。这样,原来的矩阵A的每个元素可以表示为B的行和C的列的点积。这样的话,存储B和C所需的存储空间可能比原矩阵A小很多,特别是当k远小于原矩阵的行数和列数时。

例如,假设原矩阵A是m×n的,那么存储它需要m×n个元素。如果分解成B(m×k)和C(k×n),那么总共有k×(m + n)个元素。当k远小于m和n时,存储量就减少了很多。比如m=1000,n=1000,k=10,那么原矩阵需要1,000,000个元素,分解后的两个矩阵只需要10×(1000+1000)=20,000个元素,节省了98%的空间。不过这样会损失一些信息,所以需要找到最优的B和C使得BC尽可能接近A。这时候可能需要用某种优化方法,比如最小化A和BC的Frobenius范数差异,如下公式,也就是最小二乘法。

求解此公式的方法:

  • 奇异值分解(SVD):截断前 k 个奇异值,得到最优低秩近似(Eckart--Young 定理)。

  • 交替最小二乘法(ALS):交替固定 B 优化 C,再固定 C 优化 B。

相关推荐
小陈又菜1 天前
【计算机网络】网络层知识体系全解:从基础概念到路由协议
服务器·人工智能·计算机网络·机器学习·智能路由器
PNP Robotics1 天前
聚焦具身智能,PNP机器人展出力反馈遥操作,VR动作捕捉等方案,获得中国科研贡献奖
大数据·人工智能·python·学习·机器人
小霖家的混江龙1 天前
数学不好也能懂:解读 AI 经典论文《Attention is All You Need》与大模型生成原理
人工智能·llm·aigc
njsgcs1 天前
ai控制鼠标生成刀路系统2 环境搭建 尝试
人工智能
喜欢吃豆1 天前
大语言模型(LLM)全栈技术深度综述:理论、系统与工程实践
人工智能·语言模型·自然语言处理·大模型
渡我白衣1 天前
计算机组成原理(8):各种码的作用详解
c++·人工智能·深度学习·神经网络·其他·机器学习
黑客思维者1 天前
机器学习016:监督学习【分类算法】(支持向量机)-- “分类大师”入门指南
人工智能·学习·机器学习·支持向量机·分类·回归·监督学习
小毅&Nora1 天前
【AI微服务】【Spring AI Alibaba】 ④ 深度实战:从零构建通义千问聊天服务(2025 最新版)
人工智能·微服务·spring ai
糖葫芦君1 天前
Lora模型微调
人工智能·算法
编码小哥1 天前
OpenCV几何变换详解:缩放、旋转与平移
人工智能·opencv·计算机视觉